期刊文献+

双树复小波与宽度学习在轴承故障诊断的应用

Fault Diagnosis of Bearing Based on Double Tree Complex Wavelet and Broad Learning System
下载PDF
导出
摘要 针对滚动轴承时域信号难以有效提取其故障特征,且信号频谱在高低频区域内较为存在对分类无意义的冗余特征使得故障分类模型在训练过程中做无用功的问题,提出使用双树复小波进行故障特征提取。在此基础上,将双树复小波和宽度学习模型结合,提出了基于双树复小波与宽度学习的滚动轴承故障诊断方法。首先,利用双数复小波将采集到的振动信号分解为不同频带的子信号;然后提取子频带作为特征向量;最后用宽度学习对样本进行训练以完成快速故障分类。 For the issue that it is difficult to effectively extract fault characteristics of rolling bearings based on their time-domain signals and the redundancy characteristics of the signal spectrum insignificant to classification in areas with high and low frequencies make the fault classification model reinvent the wheel during training,it was proposed to employ double tree complex wavelet to extract fault characteristics.On this basis,double tree complex wavelet and broad learning system models were used together to propose a fault diagnosis method of rolling bearings based on double tree complex wavelet and the broad learning system.First of all,the vibration signals collected by double tree complex wavelet are divided into sub-signals at different frequency bands.Then sub-frequency bands are extracted as eigenvector.At last,samples are trained by the broad learning system to quickly complete fault classification.
作者 张文兴 徐佳杰 刘文婧 王建国 ZHANG Wen-xing;XU Jia-jie;LIU Wen-jing;WANG Jian-guo(Faculty of Mechanical Engineering,Inner Mongolia University of Science and Technology,Inner Mongolia Baotou 014010,China)
出处 《机械设计与制造》 北大核心 2022年第5期201-204,共4页 Machinery Design & Manufacture
基金 国家自然科学基金项目(51865045) 内蒙古自然科学基金重大项目(2018ZD06) 内蒙古自然科学基金项目(2016MS0543)。
关键词 双树复小波 宽度学习 故障诊断 轴承故障 Double Tree Complex Wavelet Broad Learning System Fault Diagnosis Bearing Fault
  • 相关文献

参考文献4

二级参考文献31

  • 1谢周敏,王恩福,张国宏,赵国存,陈旭庚.基于双树复小波包变换的地震信号分析方法[J].地震学报,2004,26(S1):110-115. 被引量:7
  • 2刘金朝,丁夏完,王成国.自适应共振解调法及其在滚动轴承故障诊断中的应用[J].振动与冲击,2007,26(1):38-41. 被引量:25
  • 3李辉,郑海起,唐力伟.阶次包络谱在轴承故障诊断中的应用[J].机械强度,2007,29(3):351-355. 被引量:9
  • 4Wang Yanxue, He Zhengjia,Zi Yanyang. Enhance- ment of Signal Denoising and Multiple Fault Signa- tures Detecting in Rotating Machinery Using Dual -tree Complex Wavelet Transform[J]. Mechanical Systems and Signal Processing, 2010, 24 (1) : 119-137.
  • 5Li Hui, Zhang Yuping, Zheng Haiqi. Hilbert- Huang Transform and Marginal Spectrum for De- tection and Diagnosis of Localized Defects in Roller Bearings [J]. Journal of Mechanical Science and Technology, 2009,23 (2) :291-301.
  • 6Li Hui,Zhang Yuping,Zheng Haiqi. Application of Hermitian Wavelet to Crack Fault Detection in Gearbox[J]. Mechanical Systems and Signal Pro- cessing, 2011,25(4) :1353-1363.
  • 7Yang Yu,Yu Dejie,Cheng Junsheng. A Fault Diag- nosis Approach for Roller Bearing Based on IMF Envelope Spectrum and SVM [J]. Measurement, 2007,40(9):943-950.
  • 8Li C J ,Ma Jun. Wavelet Decomposition of Vibration for Detection of Bearing- localized Defects [[J].NDT^E International, 1997,30(3) : 143-149.
  • 9Prabhakar S, Mohanty A R, Sekhar A S. Application of Discrete Wavelet Transform for Detection of Ball Bearing Race Fault[J].Tribology International, 2002,35(12) :793-800.
  • 10Lin Jing, Qu Liangsheng. Feature Extraction Based on Morlet Wavelet and Its Application for Mechani- cal Fault Diagnosis[J]. Journal of Sound and Vibra- tion,2000,234(1) :135-148.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部