期刊文献+

基于数值实验的邻近点算法收敛速度研究 被引量:1

Research on Convergence Speed of Proximity Point Algorithm Based on Numerical Experiment
下载PDF
导出
摘要 邻近点算法是一种求解最优化问题的高效迭代算法,特别适合求解具有特殊结构的优化问题,但传统研究多基于理论分析.以二次规划问题和基追踪问题为研究对象,从数值实验角度来研究此算法的收敛速度,并应用MATLAB软件分析算法在不同的参数设置、不同的实验问题下收敛速度的变化.结果表明:在求解无约束二次规划优化问题中,r改善了目标函数的条件数,但会增加计算步骤;在求解基追踪问题中,收敛速度与步长呈正相关关系. Proximity point algorithm is an efficient iterative algorithm for solving optimization problems.It is es-pecially suitable for solving optimization problems with special structures.However,traditional research is mostly based on theoretical analysis.Taking the quadratic programming problem and the basis tracking problem as the re-search objects,the convergence rate of this algorithm is studied from the perspective of numerical experiments,and MATLAB software is used to analyze the changes in the convergence rate of the algorithm under different parameter settings and different experimental problems.The results show that in solving the unconstrained quadratic program-ming optimization problem,r improves the condition number of the objective function,but it will increase the calcu-lation steps;in solving the basis tracking problem,the convergence rate is positively correlated with the step size.
作者 王从徐 WANG Cong-xu(Department of Education,Chuzhou City Vocation College,Chuzhou,Anhui 239000,China)
出处 《石家庄学院学报》 CAS 2022年第3期68-72,共5页 Journal of Shijiazhuang University
基金 安徽省高等学校人文社会科学重点研究项目(SK2021A0978)。
关键词 邻近点算法 最优化问题 二次规划 收敛速度 neighboring point algorithm optimization problem quadratic programming convergence speed
  • 相关文献

参考文献10

二级参考文献42

  • 1高雷阜,王金希,吴洪涛.Banach空间中一类变分包含解的存在性和唯一性[J].辽宁工程技术大学学报(自然科学版),2012,31(2):252-255. 被引量:8
  • 2齐成辉,石超峰.广义集值变分不等式的一类新的外梯度算法[J].纯粹数学与应用数学,2006,22(2):194-197. 被引量:2
  • 3Martinet B. Regularisation d'inequations variationnelles par approximation successives[J]. Revue Francaise d'Informatique et de Recherche Operationnelle,1970,4:154-159.
  • 4He Bingsheng, Qian Maijian, Wang Yumei. Study on approximate proximal point algorithms for monotone variational inequalities[M]//Yuan Yaxiang. Numerical Linear Algebra and Optimization. Beijing: Science Press,2004.
  • 5Rockfellar R T. Monotone operators and the proximal point algorithm[J]. SIAM J. Control and Optimization, 1976,14(5) :877-898.
  • 6Han Deren, He Bingsheng. A new accuracy criterion for approximate proximal point algorithms[J]. Journal of Mathematical Analysis and Applications,2001,263:343-354.
  • 7Solodov M V. Switer B F. A hybrid projection-proximal point algorithm[J]. Journal of Convex Analysis,1999, 6(1):59-70.
  • 8Solodov M V. Svalter B F. A hybrid approximate extragradient-proximal point algorithm using the enlarge- ment of a maximal monotone operator[J]. Set-Valued Analysis,1999,7:323-345.
  • 9Kanzow Christian, Jiang Houyuan. A continuation method for (strongly) monotone variational inequalities[J]. Mathematical Programming,1998,81:103-125.
  • 10刘金昆.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社.2003.

共引文献20

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部