期刊文献+

一个基于低通图滤波器的推荐模型

A Recommendation Model Based on Low-pass Graph Filters
下载PDF
导出
摘要 推荐系统已经成为大数据时代帮助用户挖掘其偏好的有力工具,也创造了大量的经济价值.在实际推荐场景下,尽管用户的偏好或者项目(也称“商品”)的特性都是相对稳定的,可以通过用户与商品的历史交互来捕获.但是,用户对商品存在误触的点击行为,这实际上是噪音信号.如何对用户-商品进行降噪并学习精确的用户偏好是推荐系统的基本需求.我们将用户-商品交互建模为二部图,并从图信号处理的角度设计了一种低通图滤波器,其可以抑制和过滤高频噪音并筛选出低频的用户偏好.最后,2个真实数据集上的大量实验验证了所设计算法的有效性. Recommendation systems have become useful tools in the era of big data to mine user preferences with economic value. In recommendation applications, user preferences or characteristics of commodity are relatively stable and can be gathered through historical interactions between user and commodity. Users may also make false clicks and create noisy signals. A basic requirement of recommendation system is to reduce noises in user-commodity interactions and mine user preferences accurately. In this paper, the user-commodity interaction is modeled as a bipartite graph. A low-pass graph filter is designed to filter noises in high-frequency and retain user preferences in low-frequency.Experiments verify the effectiveness of the algorithm in applying to open data sets.
作者 彭裕培 陈力 PENG Yupei;CHEN Li(Department of Electronic Engineering,Shantou University,Shantou 515063,Guangdong,China)
出处 《汕头大学学报(自然科学版)》 2022年第2期61-74,共14页 Journal of Shantou University:Natural Science Edition
关键词 推荐系统 图信号处理 低通图滤波器 二部图 BPR损失 recommendation systems graph signal processing low-pass graph filters bipartite graphs BPR loss
  • 相关文献

参考文献1

二级参考文献11

  • 1ADOMAVICIUS G, TUZHILIN A. Toward the next generation of re- commender systems : a survey of the state-of.the-art and possible exten- sions[ J]. IEEE Trans on Knowledge and Data Engingeering, 2005,17(6) : ?34-?49.
  • 2EOM J B, LEE T J, RIETMAN R. An efficient framed-slotted ALOHAalgorithm with pilot frame and binary selection for anti-collision of RFID tags[J]. IEEE Communications Letters,2008,12(11 ) :861- 863.
  • 3ZHENG Rong,PROVOST F, GHOSE A. Social network collaborative filtering [ D ]. New York: New York University,2007.
  • 4ZHOU Tao, SU Ri-qi, LIU Run-ran,et al. Accurate and diverse recom- mendations via eliminating redundant correlations [ J ]. New Journal of Physics ,2009,11 (12) : 123008.
  • 5LIU Jian- guo, WANG Bing- hong, GUO Qiang. Improved collaborative filtering algorithm via information transformation [ J ]. international Joumal of Modem Physics C,2009,20(2) :285-293.
  • 6ZHANG Yi-cheng, MEDO M, REN Jie, et al. Recommendation model based on opinion diffusion [ J ]. Europhysics Letters, 2007,80 (6) : 68003.
  • 7ZHANIN M M,CANO P BULDU J M,et al. Complex networks in re- commendation systems [ C ]//Proc of WSEAS International Conference on Computer Engineering and Applications, World Seientific Advanced Series in Electrical and Computer Engineering. 2008.
  • 8ZHOU Tao, REN Jie, MEDO M, et al. Bipartite network projection and personal recommendation [ J ]. Physical Review E, 2007,76 ( 4 ) : 046115.
  • 9张忠平,郭献丽.一种优化的基于项目评分预测的协同过滤推荐算法[J].计算机应用研究,2008,25(9):2658-2660. 被引量:21
  • 10王晓堤,桑婧.基于云模型的时间修正协同过滤推荐算法[J].计算机工程与科学,2012,34(12):160-163. 被引量:7

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部