摘要
我们证明了若如下具有有理系数a(z),a_(i)(z),b_(j)(z)的时滞微分方程[w(z+1)w(z)-1][w(z)w(z-1)-1]+a(z)(w’(z))/(w(z))=(∑^(p)_(i=0)a_(i)(z)w^(i))/(∑^(q)_(j=0)b_(j)(z)w^(j))存在有限多个极点的超越亚纯函数解w且其超级小于1,则方程退化为一类形式更为简单的方程,改进了Liu和Song的结论.进一步,我们也研究了一类Tumura-Clunie型的时滞微分方程,并得到了其超越亚纯解的一些性质.
We show that if the following delay differential equation[w(z+1)w(z)-1][w(z)w(z-1)-1]+a(z)(w’(z))/(w(z))=(∑^(p)_(i=0)a_(i)(z)w^(i))/(∑^(q)_(j=0)b_(j)(z)w^(j))with rational coefficients a(z),a_(i)(z),b_(j)(z),admits a transcendental meromorphic solution w of finite many poles with hyper-order less than one,then it reduces into a more simple delay differential equation,which improves some known theorems obtained most recently by Liu and Song.Moreover,we also study the delay differential equations of Tumura-Clunie type and obtain some quantitative properties of transcendental meromorphic solutions.
作者
刘曼莉
扈培础
李植
王琼燕
Man Li LIU;Pei Chu HU;Zhi LI;Qiong Yan WANG(Department of Mathematics,South China Agricultural University,Guangzhou 510642,P.R.China;School of Mathematics,Shandong University,Jinan 250100,P.R.China;School of Mathematical Sciences,Peking University,Beijing 100871,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2022年第2期221-234,共14页
Acta Mathematica Sinica:Chinese Series
基金
山东省自然科学基金资助项目(ZR2018MA014)。