期刊文献+

某些特定非线性时滞微分方程的问题

Results of Certain Types of Nonlinear Delay Differential Equation
原文传递
导出
摘要 我们证明了若如下具有有理系数a(z),a_(i)(z),b_(j)(z)的时滞微分方程[w(z+1)w(z)-1][w(z)w(z-1)-1]+a(z)(w’(z))/(w(z))=(∑^(p)_(i=0)a_(i)(z)w^(i))/(∑^(q)_(j=0)b_(j)(z)w^(j))存在有限多个极点的超越亚纯函数解w且其超级小于1,则方程退化为一类形式更为简单的方程,改进了Liu和Song的结论.进一步,我们也研究了一类Tumura-Clunie型的时滞微分方程,并得到了其超越亚纯解的一些性质. We show that if the following delay differential equation[w(z+1)w(z)-1][w(z)w(z-1)-1]+a(z)(w’(z))/(w(z))=(∑^(p)_(i=0)a_(i)(z)w^(i))/(∑^(q)_(j=0)b_(j)(z)w^(j))with rational coefficients a(z),a_(i)(z),b_(j)(z),admits a transcendental meromorphic solution w of finite many poles with hyper-order less than one,then it reduces into a more simple delay differential equation,which improves some known theorems obtained most recently by Liu and Song.Moreover,we also study the delay differential equations of Tumura-Clunie type and obtain some quantitative properties of transcendental meromorphic solutions.
作者 刘曼莉 扈培础 李植 王琼燕 Man Li LIU;Pei Chu HU;Zhi LI;Qiong Yan WANG(Department of Mathematics,South China Agricultural University,Guangzhou 510642,P.R.China;School of Mathematics,Shandong University,Jinan 250100,P.R.China;School of Mathematical Sciences,Peking University,Beijing 100871,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2022年第2期221-234,共14页 Acta Mathematica Sinica:Chinese Series
基金 山东省自然科学基金资助项目(ZR2018MA014)。
关键词 整解 非线性时滞微分方程 Tumura-Clunie理论 增长级 entire solution nonlinear delay differential equation Tumura-Clunie theory growth order
  • 相关文献

参考文献3

二级参考文献23

  • 1Yi H. X., Yang C. C., Theory of the Uniqueness of Meromorphic Functions, Beijing: Science Press, 1995 (in Chinese).
  • 2Laine I., Nevanlinna Theory and Complex Differential Equations, Berlin: Walter de Gruyter, 1993.
  • 3Ablowitz M. J., Halburd R., Herbst B., On the extension of the Painleve property to difference equations, Nonlinearity, 2000, 13(3): 889-905.
  • 4Bergweiler W., Langley J. K., Zeros of differences of meromorphic functions, Mathematical Proceedings of the Cambridge Philosophical Society, 2007, 142(1): 133 147.
  • 5Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f(z + 77) and difference equations in the complex plane, Ramanujan Journal, 2008, 16(1): 105-129.
  • 6Gundersen G. G., Heittokangas J. etc., Meromorphic solutions of generalized Schroder, Aequationes Mathe- matieae, 2002, 63(1/2): 110-135.
  • 7Heittokangas J., Korhonen R., Laine I., Rieppo J., Tohge K., Complex difference equations of Malmquist type, Computational Methods and Function Theory, 2001, 1(1): 27-39.
  • 8Halburd R. G., Korhonen R., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, Journal of Mathematical Analysis and Applications, 2006, 314(2): 477 487.
  • 9Halburd R. G., Korhonen R., Nevanlinna theory for the difference operator, Annales Academia Scientiarium Fennica. Mathematica, 2006, 31(2): 463-478.
  • 10Halburd R. G., Korhonen R., Existence of finite-order meromorphic solutions as a detector of integrability in difference equations, Physica D, 2006, 218(2): 191 203.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部