期刊文献+

融合隐语义模型与门控循环单元的推荐算法

Recommendation Algorithm Combining Latent Factor Model and Gated Recurrent Unit
下载PDF
导出
摘要 在传统的推荐算法中,往往缺乏对用户长短期兴趣偏好问题的考虑,而随着深度学习在推荐算法中应用的不断深入,这一问题能够得到很好的解决.本文针对该问题提出一种融合隐语义模型与门控循环单元的长短期推荐算法(recommendation algorithm based on long short-term,RA_LST),以实现对用户长短期偏好的分别捕捉,有效解决了因用户兴趣随时间变化而导致推荐效果下降的问题.最终的实验结果表明,本文提出的算法在不同的数据集上都表现出了推荐准确性的提升. In traditional recommendation algorithms,there is often a lack of consideration of users’long short-term interest preferences.However,with the deepening of the application of deep learning in recommendation algorithms,this problem can be solved well.In response to the problem,this study proposes a recommendation algorithm based on long short-term interest preferences(RA_LST),which integrates a latent factor model and a gated recurrent unit.It can capture users’long short-term preferences respectively and thus effectively solves the problem that the recommendation effect decreases due to users’interest changing with time.The final experimental results show that the proposed algorithm improves the recommendation accuracy on different data sets.
作者 刘星宇 谢颖华 LIU Xing-Yu;XIE Ying-Hua(College of Information Science and Technology,Donghua University,Shanghai 201620,China)
出处 《计算机系统应用》 2022年第5期285-290,共6页 Computer Systems & Applications
关键词 推荐算法 隐语义模型 循环神经网络 门控循环单元 随机梯度下降 深度学习 recommendation algorithm latent factor model recurrent neural networks(RNN) gated recurrent unit(GRU) stochastic gradient descent deep learning
  • 相关文献

参考文献2

二级参考文献9

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部