期刊文献+

非线性分数阶耦合泛函微分方程组边值问题的可解性 被引量:1

Solubility of Boundary Value Problems for Nonlinear Fractional Coupled Functional Differential Systems
下载PDF
导出
摘要 由于运动速度是有限的,因此在信号传输等过程中时滞现象往往是不可避免的。分数阶泛函微分方程是研究时滞系统运动规律的重要模型,当系统中具有两个或多个状态变量且这些状态变量相互作用时,常常运用耦合微分方程组来刻画。对一类具有Riemann-Liouville分数阶导数的非线性时滞耦合泛函微分方程组边值问题正解的存在唯一性进行了研究。首先,根据方程与边界条件的特点,建立了比较定理,构造了上解与下解的单调序列,并确定了上下解的关系。运用上下解的方法建立并证明了边值问题正解的存在性定理,同时得到了正解的取值范围。然后,利用迭代技术建立并证明了边值问题正解的存在唯一性定理。最后,给出了具体例子用于说明所得主要结论的适应性与广泛性。 Since the speed of all motions are limited, the time-delay phenomena are often inevitable in the signal transmission or other process. The fractional functional differential equations are important models to study the movement of time-delay systems. When there are two or more interact state variables in the system, they could always be characterized by coupled differential equations. The existence and uniqueness of positive solutions for boundary value problems of a class of nonlinear delay coupled functional differential systems with Riemann-Liouville fractional derivatives are studied. Firstly, according to the characteristics of equations and boundary conditions, a comparison theorem for the system is constructed, the monotonic sequence of upper and lower solutions is obtained, and the relationship between the upper and lower solutions is determined. Secondly, the existence theorems for positive solution of boundary value problem are established and proved by using the method of upper and lower solutions, and the value range of positive solutions is obtained. And thirdly, the existence and uniqueness theorem for positive solution of the boundary value problem is established and proved by iterative technique. Finally, a specific example is given out to illustrate the adaptability and universality of the main results.
作者 乔若楠 刘锡平 贾梅 QIAO Ruonan;LIU Xiping;JIA Mei(College of Science,University of Shanghai for Science and Technology,Shanghai 200093)
出处 《工程数学学报》 CSCD 北大核心 2022年第1期135-147,共13页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11171220)。
关键词 泛函微分方程 耦合系统 边值问题 Riemann-Liouville分数阶导数 上下解 functional differential equations coupled systems boundary value problem Riemann-Liouville fractional derivative upper and lower solutions
  • 相关文献

参考文献8

二级参考文献47

  • 1刘锡平,贾梅.一类具复杂偏差变元的Liénard方程的周期解[J].工程数学学报,2005,22(2):361-364. 被引量:3
  • 2Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations, Singapore: World Scientific, 1989.
  • 3Bainov D D, Simeonov P S. Impulsive Differential Equations: Periodic Solutions and Applications, Harlow: Longman Scientific and Technical, 1993.
  • 4Samoilenko A M, Perestyuk N A. Impulsive Differential Equations, Singapore: World Scientific, 1995.
  • 5Rogovchenko Y V. Impulsive evolution systems: Main results and new trends, Dynamics of Continuous Discrete Impulsive Systems, 1997, 3: 57-88.
  • 6He Z M, Yu J S. Periodic boundary value problem for first order impulsive functional differential equations, J Comput Appl Math, 2002, 138: 205-217.
  • 7Li J L, Shen J H. Periodic boundary value problems for impulsive differential difference equations, Indian J Pure Appl Math, 2004, 35(11): 1265-1277.
  • 8Franco D, Liz E, Nieto J J, et al. A contribution to the study of functional differential equations with impulses, Math Nachr, 2000, 218: 49-60.
  • 9Nieto J J. Periodic boundary value problems for first order impulsive ordinary differential equa- tions, Nonlinear Anal, 2002, 51: 1223-1232.
  • 10Chen L J, Sun J T. Boundary value problem of second order impulsive functional differential equations, J Math Anal Appl, 2006, 323: 708-720.

共引文献46

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部