摘要
Cell spheroids are markedly more representative of the native tissue and the in vivo environment than traditional two-dimensional(2D)cultured cells,thus offering tremendous potential in cell biology research,tissue engineering,and drug screening.Therefore,it is crucial to develop materials and methods for efficient production of cell spheroids.However,currently developed materials,including natural and synthetic hydrogels,present drawbacks,such as undefined ingredients and imperfect biocompatibility,which hinder their widespread application.In this study,we have rationally designed biotinylated peptides that can self-assemble into supramolecular hydrogels(termed SupraGel)for 3D cell culture.The introduction of one D-amino acid in the peptide may decrease cell-matrix interactions,thus facilitating spontaneous cell spheroid formation.Two cancer cell lines,MCF-7 and 4T1,and intestinal stem cells(ISCs)can efficiently divide into cell spheroids when cultured in SupraGel.The reversible shear-thinning and recovery behavior of SupraGel is highly suitable for live-cell embedding and cell spheroid harvesting.The mechanical properties of SupraGel can be easily tuned by adjusting the peptide concentration,thus enabling its suitability for the 3D culture of diverse cell spheroids.We envision the significant potential of our SupraGel for applications in cell therapy,regenerative medicine,and drug screening.
与传统的二维培养的细胞相比,三维培养的细胞球更能够代表天然组织和体内环境,因此细胞球在细胞生物学研究、组织工程、药物筛选方面具有巨大的潜力.然而目前开发的包括天然和合成水凝胶在内的材料,存在成分不确定和生物相容性差等缺点,阻碍了它们的广泛应用.在这项研究中,我们设计了能够自组装的超分子多肽水凝胶(称为SupraGel)用于三维培养中.在多肽中引入一个D构型的氨基酸可能会减少细胞与基质之间的相互作用,从而促进自发细胞球的形成.当在SupraGel中培养两种癌细胞系MCF-7和4T1以及肠道干细胞(ISCs)时,细胞能够有效增殖并生长为细胞球.SupraGel的触变性以及自恢复行为非常适合活细胞的包埋以及细胞球的后续收集.同时,SupraGel的机械强度能够通过调整多肽的浓度轻松调节,从而使其适用于不同细胞球的三维培养.实验结果表明SupraGel能够有效生产细胞球,在细胞治疗、再生医学和药物筛选方面具有巨大的应用潜力.
作者
Sifan Ai
Hui Li
Hao Zheng
Jinming Liu
Jie Gao
Jianfeng Liu
Quan Chen
Zhimou Yang
艾思凡;李惠;郑浩;刘金鸣;高洁;刘鉴峰;陈佺;杨志谋(Key Laboratory of Bioactive Materials,Ministry of Education,State Key Laboratory of Medicinal Chemical Biology,College of Life Sciences,Collaborative Innovation Center of Chemical Science and Engineering,and National Institute of Functional Materials,Nankai University,Tianjin 300071,China;Key Laboratory of Radiopharmacokinetics for Innovative Drugs,Chinese Academy of Medical Sciences,and Institute of Radiation Medicine,Chinese Academy of Medical Sciences&Peking Union Medical College,Tianjin 300192,China)
基金
supported by the National Key Research and Development Program of China(2020YFA080370 and 2020YFA0803702)
the Frontiers Science Center for New Organic Matter,Nankai University(63181206)
the National Natural Science Foundation of China(21875116,81921004,51973096,and 31970716)
the financial support from TinGo Regenerative Medicine(Tianjin)Co.,Ltd.