期刊文献+

一类双扩散对流方程组的解对Lewis系数的连续依赖性研究

Continuous dependence of solutions of a class of double diffusion convection equations on Lewis coefficients
下载PDF
导出
摘要 研究了有界区域内多孔介质中一类双扩散扰动模型的解的结构稳定性。首先得到了一些有用的先验估计,然后利用这些先验估计构建了解的差所满足的一阶微分不等式,最后通过积分该微分不等式,建立了解对Lewis系数L_(e)的连续依赖性结果。该结果表明,用双扩散扰动模型描述多孔介质中的流体流动是准确的。 This paper studies the structural stability for solutions of a double diffusion perturbation model in porous medium in a bounded domain.We firstly obtain some useful a priori estimates.Using these a priori estimates,we then formulate a first order differential inequality that the solution satisfies.Finally,by integrating the inequality,we get the result of continuous dependence for the solutions on the Lewis coefficient Le.This result shows that it is accurate for the double diffusion perturbation model to be used to describe the flow in porous media.
作者 王泽 WANG Ze(School of Internet Finance and Information Engineering,Guangdong University of Finance,Guangzhou 510521,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2022年第3期300-307,共8页 Journal of Zhejiang University(Science Edition)
基金 广州市科技计划项目(201707010126)。
关键词 双扩散对流方程组 连续依赖性 Rayleigh系数 Lewis系数 double diffusion convection equations continuous dependence Rayleigh coefficient Lewis coefficient
  • 相关文献

参考文献5

二级参考文献7

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部