摘要
以金沙江上游流域为例,使用多源卫星数据,基于水量平衡方程估算产流量,采用CaMa-Flood水动力模型进行汇流计算,分别采用人工神经网络(artificial neural networks,ANN)、广义回归神经网络(generalized regression neural network,GRNN)和长短期记忆神经网络(long short term memory,LSTM)模型进行水文模拟。结果表明:(1)陆地水储量变化(terrestrial water storage anomaly,TWSA)主导了水量平衡径流估计值的总体不确定性;(2)CaMa-Flood模型具有较高的模拟精度,相关系数、纳什效率系数和水量相对误差分别为0.92、0.77和-0.63%;(3)LSTM模型在率定期和验证期间的径流模拟结果均好于ANN和GRNN模型。基于多源卫星数据估算径流过程,为稀缺资料地区的水资源开发利用和保护提供了一条新的途径。
By taking the upper Jinsha River basin as an example,this study used multi-source satellite data to estimate runoff yield based on water balance equation,and applied the CaMa-Flood hydrodynamic model to simulate confluence process.The artificial neural networks(ANN),generalized regression neural network(GRNN)and long short term memory(LSTM)models were calibrated for further hydrological simulations.The results show that:(1)terrestrial water storage anomaly(TWSA)dominates the overall uncertainty of water balance runoff estimates;(2)the CaMa-Flood model simulates runoff accurately,the correlation coefficient,Nash efficiency coefficient and relative error are 0.92,0.77 and-0.63%,respectively;(3)the LSTM model outper-forms the ANN and GRNN models during the calibration and validation periods.Estimation of runoff process based on multi-source satellite data provides a new apporoach for development,utilization and protection of water resources in poorly gauged catchments.
作者
熊景华
郭生练
王俊
尹家波
崔震
XIONG Jinghua;GUO Shenglian;WANG Jun;YIN Jiabo;CUI Zhen(State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan 430072,China)
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2022年第4期339-346,共8页
Engineering Journal of Wuhan University
基金
中国长江三峡集团有限公司科研项目(编号:0799254)
国家自然科学基金项目(编号:51879192)。
关键词
径流过程
卫星数据
稀缺资料地区
人工神经网络
水文模拟
金沙江上游
runoff process
satellite data
data sparse region
artificial neural network
hydrological simulation
the upper basin of Jinsha River