期刊文献+

基于众源影像的三维重建方法 被引量:1

3D Reconstruction Method Based on Crowd-sourced Images
下载PDF
导出
摘要 目前,众源影像存在获取数据难以筛选,进而导致从影像中生成的点云数据产生几何缺失和含有大量噪声等问题。为了解决这个问题,实现了一种基于众源影像的三维重建方法。首先,采用基于网站API(application programming interface)和基于网页解析的方法获取众源影像数据,然后借助深度学习对获取得到的众源影像进行筛选,获取高质量的众源影像数据,最后运用运动恢复结构(structure from motion,SFM)算法完成三维重建。论文利用众源影像获取场景的三维结构,对生成的点云模型进行对比和分析,得到了经深度学习算法筛选的图片集更适用于三维重建的结论,以解决众源影像这一新兴数据源在三维建模应用时出现的弊端和不足。 At present,It is difficult to filter the data from crowd-sourced images,which leads to the geometric missing and noises in the point cloud data generated from the images.To solve this problem,a method of 3D reconstruction based on crowd-sourced images was presented.Firstly,the methods based on website application programming interface(API)and web page analysis were used to obtain the crowd-sourced images.Then,the crowd-sourced images were filtered by deep learning to obtain high-quality crowd-sourced pictures data.Finally,the structure from motion(SFM)algorithm was used to complete the 3D reconstruction based on the filtered crowd-sourced images.It is concluded that image set screened by deep learning algorithm is more suitable for 3D reconstruction,so as to solve the disadvantages and deficiencies of crowd-sourced image,an emerging data source,in the application of 3D modeling.
作者 王志明 刘丹 WANG Zhi-ming;LIU Dan(Faculty of Geomatics, East China University of Technology, Nanchang 330013, China)
出处 《科学技术与工程》 北大核心 2022年第12期4729-4738,共10页 Science Technology and Engineering
基金 国家自然科学基金(41701437) 江西省教育厅科技计划(GJJ180420)。
关键词 众源影像 深度学习 图像筛选 三维重建 crowd-sourced images deep learning pictures filtering three dimensional reconstruction
  • 相关文献

参考文献13

二级参考文献86

  • 1周成虎.全空间地理信息系统展望[J].地理科学进展,2015,34(2):129-131. 被引量:166
  • 2孟斌,王劲峰,张文忠,刘旭华.基于空间分析方法的中国区域差异研究[J].地理科学,2005,25(4):393-400. 被引量:462
  • 3胡青峰,张子平,何荣,牛遂旺.基于Geoda 095i区域经济增长率的空间统计分析研究[J].测绘与空间地理信息,2007,30(2):53-55. 被引量:30
  • 4Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. Pattern Anal Mach Intell, 2009, 32:1362-1376.
  • 5Micusik B, Kosecka J. Multi-view superpixel stereo in urban environments. Int J Comput Vision, 2010, 89:106-119.
  • 6Gallup D, Frahm J M, Pollefeys M. Piecewise planar and non-planar stereo for urban scene reconstruction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, 2010. 1418- 1425.
  • 7Sinha S N, Steedly D, Szeliski R. Piecewise planar stereo for image-based rendering. In: Proceedings of IEEE Inter- nationM Conference on Computer Vision (ICCV), Kyoto, 2009. 1881-1888.
  • 8Kim H, Xiao H, Max N. Piecewise planar scene reconstruction and optimization for multi-view stereo. In: Proceedings of Asian Conference on Computer Vision, Daejeon, 2012. 191-204.
  • 9Nan L, Sharf A, Zhang H, et al. SmartBoxes for interactive urban reconstruction. ACM Trans Graph, 2010, 29:93.
  • 10Lipp M, Wonka P, Wimmer M. Interactive visual editing of grammars for procedural architecture. ACM Trans Graph, 2008, 27:1- 10.

共引文献2006

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部