摘要
Mode-localized sensors have attracted attention because of their high parametric sensitivity and first-order common-mode rejection to temperature drift.The high-fidelity detection of resonator amplitude is critical to determining the resolution of mode-localized sensors where the measured amplitude ratio in a system of coupled resonators represents the output metric.Operation at specific bifurcation points in a nonlinear regime can potentially improve the amplitude bias stability;however,the amplitude ratio scale factor to the input measurand in a nonlinear regime has not been fully investigated.This paper theoretically and experimentally elucidates the operation of mode-localized sensors with respect to stiffness perturbations(or an external acceleration field)in a nonlinear Duffing regime.The operation of a mode-localized accelerometer is optimized with the benefit of the insights gained from theoretical analysis with operation in the nonlinear regime close to the top critical bifurcation point.The phase portraits of the amplitudes of the two resonators under different drive forces are recorded to support the experimentally observed improvements for velocity random walk.Employing temperature control to suppress the phase and amplitude variations induced by the temperature drift,1/f noise at the operation frequency is significantly reduced.A prototype accelerometer device demonstrates a noise floor of 95 ng/√Hz and a bias instability of 75 ng,establishing a new benchmark for accelerometers employing vibration mode localization as a sensing paradigm.A mode-localized accelerometer is first employed to record microseismic noise in a university laboratory environment.
基金
This project is supported in part by the by Innovate UK and Silicon Microgravity Ltd.