期刊文献+

High-speed identification of suspended carbon nanotubes using Raman spectroscopy and deep learning 被引量:1

原文传递
导出
摘要 The identification of nanomaterials with the properties required for energy-efficient electronic systems is usually a tedious human task.A workflow to rapidly localize and characterize nanomaterials at the various stages of their integration into large-scale fabrication processes is essential for quality control and,ultimately,their industrial adoption.In this work,we develop a high-throughput approach to rapidly identify suspended carbon nanotubes(CNTs)by using high-speed Raman imaging and deep learning analysis.Even for Raman spectra with extremely low signal-to-noise ratios(SNRs)of 0.9,we achieve a classification accuracy that exceeds 90%,while it reaches 98%for an SNR of 2.2.By applying a threshold on the output of the softmax layer of an optimized convolutional neural network(CNN),we further increase the accuracy of the classification.Moreover,we propose an optimized Raman scanning strategy to minimize the acquisition time while simultaneously identifying the position,amount,and metallicity of CNTs on each sample.Our approach can readily be extended to other types of nanomaterials and has the potential to be integrated into a production line to monitor the quality and properties of nanomaterials during fabrication.
出处 《Microsystems & Nanoengineering》 SCIE EI CSCD 2022年第1期259-267,共9页 微系统与纳米工程(英文)
基金 We acknowledge financial support from Strategic Focus Area(SFA)Advanced Manufacturing(Project NanoAssembly) M.L.P.and J.Z.acknowledge funding by the EMPAPOSTDOCS-II program,which has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska–Curie Grant Agreement no.754364 M.L.P.also acknowledges funding from the Swiss National Science Foundation under Spark grant no.196795。
关键词 CARBON suspended SPEED
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部