期刊文献+

基于FPFH特征的三维点云配准方法研究 被引量:4

Research on 3D point cloud registration based on FPFH features
下载PDF
导出
摘要 随着三维激光扫描技术的发展,利用点云数据的三维重建技术在逆向工程、虚拟现实等领域有着广泛应用。在实际扫描测量中,由于环境条件不好或者目标物体被遮挡,为了获得被测物体完整的表面信息,通常需要在多视角下采集数据,点云配准将不同视角下的点云坐标变换到统一的坐标系,便于后续应用。目前点云配准有很多算法,本文主要研究基于FPFH特征描述子对点云进行粗配准,然后使用ICP算法配准,实现三维点云的精确配准。实验结果表明,本文使用的配准方法具有可行性与有效性,为点云配准提供了一种借鉴方法。 With the development of 3 D laser scanning technology, 3 D reconstruction technology using point cloud data has been widely used in reverse engineering, virtual reality, and other fields. In the actual scanning measurement, due to poor environmental conditions or the target object is blocked, in order to obtain the complete surface information of the object to be measured, it is usually necessary to collect data from multiple perspectives. Point cloud registration transforms the point cloud coordinates from different perspectives into a unified coordinate system, which is convenient for subsequent applications. At present, there are many algorithms for point cloud registration. This paper mainly studies the coarse registration of point cloud based on FPFH feature descriptor, and then uses ICP algorithm to achieve accurate registration. The experimental results show that the registration method used in this paper is feasible and effective, which provides a reference for the point cloud registration.
作者 谭国威 伍吉仓 Tan Guowei;Wu Jicang(College of Surveying and Geoinformatics,Tongji University,Shanghai 200092,China)
出处 《工程勘察》 2022年第4期52-56,共5页 Geotechnical Investigation & Surveying
基金 上海市科技攻关计划(20dz1201202)。
关键词 三维激光扫描 点云配准 FPFH ICP算法 3D laser scanning point cloud registration FPFH ICP algorithm
  • 相关文献

参考文献5

二级参考文献71

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:99
  • 2解则晓,张成国,张国雄.线结构光测量数据的自动拼合方法[J].中国机械工程,2005,16(9):775-778. 被引量:18
  • 3朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 4Salvi J, Mataboseh C, Foil D, et al. A review of recent range image registration methods With accuracy evaluation [J]. Image and Vision Computing, 2007, 25(5):578-596.
  • 5Besl P J, Mckay N D. A method for registration of 3 d shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligenee, 1992, 14(2): 289-256.
  • 6Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm [C]. Quebec City, Canada: Proceedings of the 3^rd International Conference on 3D Digital Imaging and Modeling, 2001: 145-152.
  • 7Turk G, Levoy M. Zippered polygon meshes from range images [C]. Orlando, America:Proceedings of the 21^st Annual Conference on Computer Graphics and Interactive Techniques, 1996: 311-318.
  • 8Masuda T. Generation of geometric model by registration and integration of multiple range images [C]. Quebec City, Canada: Proceedings of the 3^rd International Conference on 3D Digital Imaging and Modeling, 2001: 254-261.
  • 9Masuda T, Yokoya N. A robust method for registration and segmentation of multiple range images [J]. Computer Vision and Image Understanding, 1995, 61(3): 295-307.
  • 10Gelfand N, Ikemoto L, Rusinkiewicz S, et al. Geometrically stable sampling for the ICP algorithm [C]. Banff, Canada: Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling, 2003: 260-267.

共引文献105

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部