期刊文献+

结合遥感和统计数据的家畜分布网格化方法研究

Mapping Grid Livestock Distribution with Remote Sensing and Statistical Data
原文传递
导出
摘要 家畜的空间分布对于粮食安全、农业社会经济、环境影响评估和人畜共患病的研究等方面至关重要。选取甘肃省作为典型研究区,以羊为研究对象,基于随机森林回归算法构建了融合遥感数据和统计数据的家畜分布网格化估算模型,获得甘肃省1 km×1 km尺度上羊的空间分布信息。结果表明:基于随机森林回归的家畜分布网格化估算模型,结合了遥感数据和统计数据的优势,可以较准确地估算1 km×1 km尺度上家畜的空间分布情况,估算结果与统计数据之间的相关系数(R)达到0.88,均方根误差(RMSE)为0.24,相对均方根误差(RRMSE)为15.1%。甘肃省的羊主要分布在河西走廊戈壁区、甘南高原草原草甸区、黄土高原丘陵区的西南部以及黄土高原沟壑区的北部。对羊的空间分布影响较大的环境因子依次是:耕地百分比、海拔、地表温度和坡度。 The livestock’s distribution across space is essential to the research on food safety,agricultural society economy,environmental influence assessment and zoonosis.In this study,an approximation model of livestock’s distribution across space was constructed on the basis of Random Forest(RF)regression algorithm to combine remote sensing data and statistical data.In order to test and validate the proposed method,statistics for sheep in 87 counties of Gansu Province was collected in 2010 and 11 environmental factors were considered in this scheme.Finally,the spatial distribution information of sheep on the scale of 1 km×1 km in Gansu Province is obtained by the model.As is indicated by the results,the grid model of livestock’s spatial distribution based on the RF regression has included the advantages of both remote sensing data and statistical data.It is able to estimate the spatial distribution situation of sheep on the scale of 1 km×1 km with certain accuracy.The correlation coefficient(R)between estimated results and statistical data reached 0.88,the Root Mean Square Error(RMSE)was 0.24,and the Relative Root Mean Square Error(RRMSE)was 15.1%.Sheep in Gansu Province are mainly distributed in the Gobi area of the Hexi Corridor,the grassland and meadow area of the Gannan Plateau,the southwestern part of the hilly area of the Loess Plateau,and the northern part of the gully area of the Loess Plateau.The environmental factors that have a greater impact on the spatial distribution of sheep are:percentage of cultivated land,altitude,surface temperature,and slope.
作者 李翔华 黄春林 侯金亮 韩伟孝 冯娅娅 陈彦四 王静 Li Xianghua;Huang Chunlin;Hou Jinliang;Han Weixiao;Feng Yaya;Chen Yansi;Wang Jing(Key Laboratory of Remote Sensing of Gansu Province,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;University of Chinese Academy of Sciences,Beijing 100049,China;Gansu Food Inspection and Research Institute,Lanzhou 730000,China)
出处 《遥感技术与应用》 CSCD 北大核心 2022年第1期262-271,共10页 Remote Sensing Technology and Application
基金 中国科学院战略性先导科技专项(A类)(XDA19040500) 甘肃省重点研发计划项目(17YF1FA134)。
关键词 随机森林回归 空间降尺度 家畜 遥感 Random forest regression Spatial downscaling Livestock Remote sensing
  • 相关文献

参考文献5

二级参考文献42

  • 1侯扶江,杨中艺.放牧对草地的作用[J].生态学报,2006,26(1):244-264. 被引量:219
  • 2杨具瑞 成自勇.甘肃农业洪涝灾害研究[J].水土保持学报,2000,(6):151-155.
  • 3Archer KJ, Kirnes RV, 2008. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. ,52(4):2249-2260.
  • 4Biau G, 2012. Analysis of a random forests model. J. Mach. Learn. Res. , 13: 1063 -1095.
  • 5Breiman L, 2001a. Random forests. Mach. Learn. , 45:5 - 32.
  • 6Breiman L, 2001b. Statistical modeling: The two cultures. Stat. Sci., 16:199-215.
  • 7Breiman L, Friedman JH, O lshen RA, Stone CJ, 1984.Classification and Regression Trees. Chapman and Hall. 1 -359.
  • 8Cutler DR, Edwards TC, Jr., Beard KH, Cutler A, Hess KT, 2007. Random forests for classification in ecology. Ecology, 88 (11) :2783 - 2792.
  • 9Deng H, Runger G, Tuv E, 2011. Bias of importance measures for multi-valued attributes and solutionsl I Proceedings of the 21 st International Conference on Artificial Neural Networks (ICANN).
  • 10Elith J, Graham CH, 2009. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32 ( 1 ) : 66 - 77 .

共引文献389

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部