期刊文献+

基于粒子追踪测速的壁面摩擦应力测量 被引量:2

Measurement of wall-shear stress via micro-particle tracking velocimetry
下载PDF
导出
摘要 采用微粒子追踪测速技术(Micro-Particle Tracking Velocimetry,μ-PTV)对近壁面的流场开展高空间分辨率测量,通过解析黏性底层的速度分布,应用一次线性回归计算得到壁面摩擦应力。测量了不同雷诺数(基于动量损失厚度)下的湍流边界层壁面摩擦切应力,在Reθ=1200时获得了罕见回流事件的发生概率和流场结构。实验结果表明,采用μ-PTV技术可以实现壁面摩擦应力的准确测量,在Reθ=1634~4070时,摩擦阻力系数测量误差小于2%。回流事件的概率极低,在Reθ=1200时约为0.05%,尺度小于8×30个壁面单位,因此回流事件的测量对测量技术的空间分辨率要求较高;分析结果表明回流事件伴随壁面附近的强展向涡出现。 Micro-Particle Tracking Velocimetry(μ-PTV)was used to measure the flow field near the wall with high spatial resolution.By analyzing the velocity distribution of the viscous sublayer,the wall-shear stress can be analyzed by one-time linear regression.The wall-shear stress of the turbulent boundary layer at different Reynolds numbers based on momentum loss thickness was measured and the flow structure of reversal flow events was obtained at Reθ=1200.The results show that the micro-particle tracking velocimetry technology can accurately measure the wall-shear stress and the measurement error of wall-shear stress is below 2%for Reθ=1634–4070.Furthermore,the probability of reversal flow is extreme low,i.e.,about 0.05%at Reθ=1200.The measured spatial scale of reversal flow structures is around 8×30 wall units,and therefore the measurement of reversal flow events requires high spatial resolution of the measurement technology.The results show that the reversal flow events occur with the appearance of strong spanwise vortices near the wall.es near the wall.
作者 许德辰 张悦 刘欣乐 李文丰 XU Dechen;ZHANG Yue;LIU Xinle;LI Wenfeng(School of Aeronautics,Northwestern Polytechnical University,Xi’an710072,China)
出处 《实验流体力学》 CAS CSCD 北大核心 2022年第2期131-138,共8页 Journal of Experiments in Fluid Mechanics
基金 国家自然科学基金(12102355) 翼型、叶栅空气动力学国家级实验室稳定支持项目(D5050200006) 中央高校基本业务经费(D5000210473) 111引智基地(B17037)。
关键词 粒子追踪测速 壁面摩擦应力 湍流边界层 回流事件 Micro-Particle Tracking Velocimetry wall-shear stress turbulent boundary layer reversal flow events
  • 相关文献

参考文献2

二级参考文献100

  • 1朱克勤,许春晓.黏性流体力学.北京:高等教育出版社,2009.
  • 2邓冰清.2014.基于相干结构的壁湍流减阻控制机理研究.[博士论文].北京:清华大学航天航空学院.
  • 3郑晓静.2014.风沙环境下的高雷诺数壁湍流研究.第8届全国流体力学会议,2014年9月19-21日,兰州.
  • 4Adrian R J. 2007. Hairpin vortex organization in wall turbulence. Physics of Fluids, 19: 041301.
  • 5Adrian R J, Liu Z C. 2002. Observation of vortex packets in direct numerical simulation of fully turbulent channel flow. Journal of Visualization, 5: 9-19.
  • 6Adrian R J, Meinhart C D, Tomkins C D. 2000. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 422: 1-54.
  • 7Agostini L, Leschziner M A. 2014. On the influence of outer large-scale structures on near-wall turbulence in channel flow. Physics of Fluids, 26: 075107.
  • 8Agostini L, Touber E, Leschziner M A. 2014. Spanwise oscillatory wall motion in channel flow: drag- reduction mechanisms inferred from DNS-predicted phase-wise property variations at Rer =1 000. Journal of Fluid Mechanics, 743: 606-635.
  • 9Balakumar B J, Adrian R J. 2007. Large- and very-large-scale motions in channel and boundary-layer flow. Phil. Trans. R. Soc. A, 365: 665-681.
  • 10Baltzer J R, Adrian R J, Wu X H. 2013. Structural organization of large and very large scales in turbulent pipe flow simulation. Journal of Fluid Mechanics, 120: 236-279.

共引文献50

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部