摘要
为研究一种新型图像去噪的手段,采用机器学习中的自编码器模型对图像进行优化。通过对原始的清晰图像添加噪声,作为编码器模型的输入数据,未添加噪声的原始图像作为标准值,对编码器模型进行训练以提高其图像去噪能力。结果表明,经过一定程度训练的自编码器模型,具备了一定的图像去噪功能。
In order to study a new method of image denoising,the auto-encoder module in machine learning is used to optimize the image.By adding noise to the original clarity image,being taken as the input data of the auto-encoder module,and the original image without adding noise as a standard value,the auto-encoder module is trained to improve image denoising ability.Experimental results show that the auto-encoder module has a certain image denoising function after training.
作者
黄韬
周俊
HUANG Tao;ZHOU Jun(Academy of Opto-Electronic,China Electronic Technology Group Corporation(AOE CETC),Tianjin,China;The Research Institute of Army Aviation Institute,Tongzhou,China)
出处
《光电技术应用》
2022年第2期63-66,共4页
Electro-Optic Technology Application
关键词
机器学习
自编码器
图像去噪
machine learning
auto-encoder
image denoising