期刊文献+

基于自编码器理论实现的图像去噪方法研究 被引量:1

Research on Image Denoising Method Based on Auto-encoder Theory in Machine Learning
下载PDF
导出
摘要 为研究一种新型图像去噪的手段,采用机器学习中的自编码器模型对图像进行优化。通过对原始的清晰图像添加噪声,作为编码器模型的输入数据,未添加噪声的原始图像作为标准值,对编码器模型进行训练以提高其图像去噪能力。结果表明,经过一定程度训练的自编码器模型,具备了一定的图像去噪功能。 In order to study a new method of image denoising,the auto-encoder module in machine learning is used to optimize the image.By adding noise to the original clarity image,being taken as the input data of the auto-encoder module,and the original image without adding noise as a standard value,the auto-encoder module is trained to improve image denoising ability.Experimental results show that the auto-encoder module has a certain image denoising function after training.
作者 黄韬 周俊 HUANG Tao;ZHOU Jun(Academy of Opto-Electronic,China Electronic Technology Group Corporation(AOE CETC),Tianjin,China;The Research Institute of Army Aviation Institute,Tongzhou,China)
出处 《光电技术应用》 2022年第2期63-66,共4页 Electro-Optic Technology Application
关键词 机器学习 自编码器 图像去噪 machine learning auto-encoder image denoising
  • 相关文献

参考文献3

二级参考文献38

  • 1黄达诠,黄海云.多状态、多阈值神经网络模型的光电混合实现[J].光学学报,1996,16(6):772-776. 被引量:3
  • 2Zhang Y, Zhou Z H. Multi-label dimensionality reduction via dependence maximization. In:Proceedings of the 23rd AAAI Conference on Artificial Intelligence. Chicago, USA:AAAI Press, 2008. 1503-1505.
  • 3Zhang M L, Zhang K. Multi-label learning by exploiting label dependency. In:Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Washington, USA:ACM, 2010. 999-1008.
  • 4Hariharan B, Zelnik-Manor L, Vishwanathan S V N, Varma M. Large scale max-margin multi-label classification with priors. In:Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel:Omnipress, 2010. 423-430.
  • 5Elisseeff A, Weston J. A kernel method for multi-labelled classification. In:Proleedings of the 2001 Advances in Neural Information Processing Systems 14. British Columbia, Canada:MIT Press, 2001. 681-687.
  • 6Sun L, Ji S W, Ye J P. Hypergraph spectral learning for multi-label classification. In:Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA:ACM, 2008. 668-676.
  • 7Zhang M L, Zhou Z H. A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837.
  • 8Gibaja E, Ventura S. A tutorial on multi-label learning. ACM Computing Surveys, 2015, 47(3):Article No. 52.
  • 9Boutell M R, Luo J B, Shen X P, Brown C M. Learning multi-label scene classification. Pattern Recognition, 2004, 37(9):1757-1771.
  • 10Sun L, Ji S W, Ye J P. Multi-label Dimensionality Reduction. Britain:Chapman and Hall/CRC Press, 2013. 34-49.

共引文献16

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部