期刊文献+

基于动态字典学习的欠定盲语音重构算法 被引量:1

Underdetermined blind speech reconstruction algorithm based on dynamic dictionary learning
下载PDF
导出
摘要 为提高传统字典学习方法选用固定的语音分段长度重构源信号的精度,提出基于动态字典学习的欠定盲语音重构算法,以提取信号中最优的稀疏表示特征。在欠定语音盲分离的两步法框架下,利用正则化Sim CO字典学习对信号进行稀疏表示,依据最速下降思想通过改变语音分段长度迭代优化信号的重构结果直至收敛,得到信号恢复的总体最优解。实验结果表明,相较传统算法,动态Sim CO字典学习算法进一步提取了信号在字典稀疏域的语音特征,在保证运行成本低的同时有效提高了欠定盲语音的重构质量。 To improve the accuracy of the traditional dictionary learning method for source reconstruction by using fixed speech block length,an underdetermined blind speech reconstruction algorithm based on dynamic dictionary learning was proposed to extract the optimal sparse representation features from the signals.Under the framework of the two-step method for the underdetermined blind source separation,the signals were sparsely represented by regularized simultaneous codeword optimization(SimCO)dictionary learning,according to the idea of the steepest descent,the results of signal reconstruction were iteratively optimized until convergence achieved by changing the block length of speech,so as to obtain the overall optimal solution of signal recovery.Experimental results show that,compared with traditional algorithms,the dynamic SimCO dictionary learning algorithm further extracts the speech features of signals in the dictionary sparse domain,and effectively improves the reconstruction quality of underdetermined blind speech while ensuring low operating cost.
作者 魏爽 王晓楠 杨璟安 WEI Shuang;WANG Xiao-nan;YANG Jing-an(The College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201418,China)
出处 《计算机工程与设计》 北大核心 2022年第5期1351-1357,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61401145) 上海市自然科学基金项目(19ZR1437600) 上海市大学生创新创业训练基金项目(202010270249)。
关键词 动态字典学习 稀疏分量分析 稀疏重构 压缩感知 欠定盲源分离 dynamic dictionary learning sparse component analysis sparse reconstruction compressed sensing underdetermined blind source separation
  • 相关文献

参考文献2

二级参考文献145

  • 1张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 2Hubel D H, Wiesel T N. Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology, 1959, 148(3): 574-591.
  • 3Willshaw D J, Buneman O P, Longuet-Higgins H C. Non- holographic associative memory. Nature, 1969, 222(5197): 960-962.
  • 4Barlow H B. Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1972, 1(4): 371-394.
  • 5Oja E. Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 1982, 15(3): 267-273.
  • 6Pham T T, Defigueiredo R J P. Maximum likelihood estima- tion of a class of non-Gaussian densities with application toLp deconvolution. IEEE Transaction on Acoustics, Speech, and Signal Process, 1989, 37(1): 73-82.
  • 7Jutten C, Herault J. Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1): 1-10.
  • 8Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 9Chen S S, Donoho D L. Saunders M A. Atomic Decompo- sition by Basis Pursuit. Technical Report, Stanford Univer- sity, Britain, 1995.
  • 10Olshausen B A, Field D J. Emergency of simple-cell recep- tive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.

共引文献124

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部