摘要
为在基于隐变量模型的因果关系发现算法中综合考虑隐变量之间的瞬时性和延时性因果效应,构建以动态贝叶斯网络为基础的时序隐变量模型,提出对应的因果关系发现算法。使用因子分析的方法估计测量模型中的因子载荷矩阵,应用结构向量自回归模型估计自回归矩阵,利用数据的非高斯性依次学习模型中隐变量之间的瞬时效应矩阵与延时效应矩阵,构建时序隐变量模型的因果网络结构。实验结果验证了算法的有效性。
To comprehensively consider the instantaneous and time-lag causal effects between hidden variables in the causal discovery algorithms based on the latent factor model,a latent factor model for time series data(LFTS)based on dynamic Baye-sian networks was presented with its corresponding algorithm.The factor analysis method was used to estimate the factor loading matrix in the measurement model,and the structure vector autoregressive model was utilized to estimate the autoregressive matrix.The non-Gaussianity of the data were employed to sequentially learn the instantaneous effect matrix and the time-lag effect matrix between latent variables,and the causal structure of the LFTS was obtained.Experimental results verify the effectiveness of the algorithm.
作者
曾艳
郝志峰
蔡瑞初
谢峰
ZENG Yan;HAO Zhi-feng;CAI Rui-chu;XIE Feng(School of Computer Science,Guangdong University of Technology,Guangzhou 510006,China;School of Mathematics and Big Data,Foshan University,Foshan 528000,China;School of Mathematical Sciences,Beijing University,Beijing 100080,China)
出处
《计算机工程与设计》
北大核心
2022年第5期1428-1434,共7页
Computer Engineering and Design
基金
NSFC-广东联合基金项目(U1501254)
国家自然科学基金项目(61876043)
广东省自然科学基金项目(2014A030306004、2014A030308008)
广东特支计划基金项目(2015TQ01X140)
广州市科技计划基金项目(201902010058)
广州市珠江科技新星基金项目(201610010101)。
关键词
时间序列
隐变量
因果关系发现
因子分析
向量自回归模型
非高斯性
time series
latent factors
causal discovery
factor analysis
structure vector autoregressive model
non-Gaussianity