期刊文献+

机撰文稿的智能识别系统设计与实现

Design and Implement of Intelligent Recognition System for Machine Written Manuscripts
下载PDF
导出
摘要 随着自媒体时代的到来,互联网新闻、网络互动社区言论成为民众舆论的主力军。该系统针对网络虚假舆论被恶意引导、传播等问题,设计一款机撰文稿的智能识别系统。首先使用Python设计网络文稿数据采集功能,然后利用TensorFlow深度学习框架训练出能分辨正负面情感的文本识别模型,最后实现业务逻辑模块和数据大屏展示,对用户请求的文稿进行判断甄别,该系统为现阶段的舆情分析提供一种新思路和新手段。 With the coming of we media era, Internet news and online interactive community speech have become the main force of public opinion. In this paper, aiming at the problem that the network false public opinion is maliciously guided and spread, an intelligent recognition system of machine written manuscripts is designed. Firstly, Python is used to design the data collection function of network manuscripts, and then tensorflow deep learning framework is used to train a text recognition model that can distinguish positive and negative emotions. Finally, the business logic module and data large screen display are implemented to judge and screen the manuscripts requested by users. This system provides a new idea and new means for the current public opinion analysis.
作者 莫永华 王可 李嘉 Mo Yonghua;Wang Ke;Li Jia(Guilin Institute of Information Technology,Guilin 541004)
出处 《现代计算机》 2022年第5期110-115,共6页 Modern Computer
基金 2019年大学生创新训练计划项目:机撰文稿的智能识别系统设计(201913644006)。
关键词 舆论文章 深度学习 情感类别 TensorFlow public opinion articles deep learning emotional category TensorFlow
  • 相关文献

参考文献3

二级参考文献62

  • 1钱爱兵,江岚.基于改进TF-IDF的中文网页关键词抽取——以新闻网页为例[J].情报理论与实践,2008,31(6):945-950. 被引量:29
  • 2HATZIVASSILOGLOU V, MCKEOWN K. Predicting the semantic orientation of adjectives[C) II Proceedings of Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Asso-ciation for Computational Linguistics, 1997: 174 - 18l.
  • 3WIEBE J, BRUCE R, MATIHEW B, et at. A corpus study of eval-uative and speculative language[C) II Proceedings of the Second SIGdial Workshop on Discourse and Dialogue. Stroudsburg, P A: Association for Computational Linguistics, 2001: 186 -195.
  • 4HATZIV ASSILOGLOU V, WIEBE J. Effects of adjective orientation and gradability on sentence subjectivity[C) II Proceedings of the 18th Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2000: 299 - 305.
  • 5WIEBE 1. Learning subjective adjectives from corpora[C) II Pro-ceedings of National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2000: 735 - 74l.
  • 6WIEBE J, WILSON T, BELL M. Identifying collocations for recog-nizing opinions[EB/OL).[2012- 06- 20). http://wenku.baidu. comlview/24e5e11cb7360b4c2e3ffi416. htm!.
  • 7WIEBE J, RILOFF E. Creating subjective and objective sentence classifiers from unannotated texts[C) II Proceedings of the 6th Inter-national Conference on Computational Linguistics and Intelligent Text Processing. Berlin: Springer-Verlag, 2005: 486 - 497 .
  • 8WIEBE J, WILSON T, CARDIE C. Annotating expressions of opin-ions and emotions in language] J). Language Resources and Evalua-tion, 2005, 39(2/3): 164 -210.
  • 9PANG B, ULUAN L, SHIVAKUMAR V. Thumbs up: sentiment classification using machine learning techniques[C) II Proceedings of the ACL'()2 Conference on Empirical Methods in Natural Lan-guage Processing. Stroudsburg, PA: Association for Computational Linguistics, 2002: 79 - 86.
  • 10RILOFF E, WIEBE J. Learning extraction patterns for subjective expressions[C) II Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Associ-ation for Computational Linguistics, 2003: 105 -112.

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部