期刊文献+

基于LDA的大学一卡通学生行为特征分析研究

Research on the Students Behavior Characteristics of Campus Card Based on LDA
下载PDF
导出
摘要 用户行为特征分析是人工智能时代研究社会发展趋势的热点。针对大学一卡通学生行为特征分析应用需要,提出基于LDA主题模型的学生行为特征挖掘框架,介绍语义轨迹与LDA主题模型转化思路,重点阐述主题模型建立和聚类特征分析。对学生群体特征的分析结果表明,该方法对大学管理部门改进一卡通质量服务有较好的参考价值。 The analysis of user behavior characteristics is a hot topic in the research of social development trend in the era of artificial intelligence.In order to analysis students’behavior characteristics of campus card application,this paper puts forward a mining framework of students’behavior characteristics based on LDA topic model,introduces the transformation ideas of semantic trajectory and LDA topic model,and focuses on the establishment of topic model and clustering feature analysis.The results of the analysis of the characteristics of the student group show that the method has a good reference for the campus management depart⁃ment to improve the quality service of campus card.
作者 冯健文 Feng Jianwen(Dean’s Office,Hanshan Normal University,Chaozhou 521041)
出处 《现代计算机》 2022年第6期48-51,共4页 Modern Computer
基金 广东省教育厅创新强校资金资助(2017KTSCX123) 韩山师范学院博士启动科研项目:基于过程挖掘的RFID数据分析方法研究。
关键词 LDA 一卡通 轨迹挖掘 LDA campus card trajectory mining
  • 相关文献

参考文献2

二级参考文献35

  • 1Lee J G, Han J, Whang K Y. Trajectory clustering: A partition-and- group framework[ C]//Proceedings of the 2007 ACM SIGMOD inter- national conference on Management of data, Beijing, China, June 11 - 14,2007.
  • 2Kharrat A, Popa I, Zeitouni K, et al. Clustering algorithm for network constraint trajectories [ C ]//13th International Symposium on Spatial Data Handling, SDH, Montpe|lier, France ,2008 : 631 - 647.
  • 3Palma A T, Bogorny V, Kuijpers B, et al. A clustering-based approach for discovering interesting places in trajectories E C ]//Proceedings of the 2008 ACM symposium on Applied computing,2008:863 - 868.
  • 4Blei D,Ng A,Jordan M. Latent diriehlet allocation[ J]. The Journal of Machine Learning Research,2003,3:993 - 1022.
  • 5Ferrari L, Rosi A, Mamei M, et al. Extracting urban patterns from loca- tion-based social networks[ C ]//LBSN ' 11,201 l.
  • 6Ferrari L, Mamei M. Discovering daily routines from google latitude with topic models[ C ]//CoMoRea' 11,2011.
  • 7Long X, Jin L, Joshi J. Exploring Trajectory-Driven Local Geographic Topics in Foursquare [ C ]//Proc LBSN' 12,2012.
  • 8Jing Yuan, Yu Zheng, Xing Xie. Discovering Regions of Different Func- tions in a City Using Human Mobility and POIs [ C ]//Proceeding. KDD 12,2012 : 186 - 194.
  • 9Blei D, Carin L, Dunson D. Probabilistic topic models. Signal Processing Magazine, 010,27(6):55-65. [doi:10.1109/MSP.2010. 938079].
  • 10Salton G, Wong A, Yang CS. A vector space model for automatic indexing. Communications of the ACM, 1975,18(11):613-620. [doi: 10.1145/361219.361220].

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部