期刊文献+

基于均值漂移聚类的开关柜局部放电异常检测 被引量:7

Anomaly Identification of Switchgear Insulation Condition Based on Mean-shift Clustering
下载PDF
导出
摘要 针对开关柜现场带电检测数据,提出一种基于多维特征量的均值漂移聚类算法,对开关柜的局部放电进行异常识别。采用局部放电检测数据的离散度、平均距离百分比、集中度和最大波动率指标全面量化开关柜局部放电的程度,并构建多维特征数据库;通过自动搜索偏移量的均值漂移聚类算法对开关柜的状态进行划分,并通过所给定的开关柜簇标签隶属度函数判定是否为异常点,由此实现开关柜的绝缘状态异常检测。对现场带电检测实际数据进行实例分析,验证该方法的可行性,为开关柜的绝缘状态异常识别提供一定的理论依据。 Aiming at the on-site live detection data of switchgear,a mean-shift clustering algorithm based on multi-dimensional feature quantity was proposed to identify the abnormal partial discharge of switchgear.The switchgear partial discharge detection data which include dispersion,average distance percentage,concentration and maximum volatility were used to quantify the insulation of switchgear to construct multi-dimensional feature database.The insulation condition of the switchgear was divided by mean-shift clustering algorithm which can automatically search for the offset,and the abnormal point was determined by the membership function of the cluster labels to realize the abnormal detection of the switchgear insulation condition.The feasibility of the algorithm was verified by the live detection data,which can provide a certain theoretical basis for the switchgear evaluation of the switchgear.
作者 黎阳羊 胡金磊 赖俊驹 王伟 杨帆 LI Yangyang;HU Jinlei;LAI Junju;WANG Wei;YANG Fan(Qingyuan Power Supply Bureau of Guangdong Power Grid Inc.,Qingyuan 511500,Guangdong,China;School of Electrical Engineering,Shanghai University of Electrical Power,Shanghai 200090,China)
出处 《电气传动》 2022年第10期63-69,共7页 Electric Drive
基金 广东电网有限责任公司科技项目(031800KK52170056)。
关键词 开关柜 绝缘状态 均值漂移聚类算法 多维特征数据库 异常检测 switchgear insulation condition mean-shift clustering algorithm multi-dimensional feature data base anomaly identification
  • 相关文献

参考文献12

二级参考文献144

共引文献226

同被引文献73

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部