期刊文献+

混合驱动柔索并联机器人自适应迭代学习控制 被引量:2

Adaptive Iterative Learning Control of Hybrid Drive Cable Parallel Manipulator
下载PDF
导出
摘要 以一种兼容混合驱动机构与柔索并联机构特点的新型混合驱动柔索并联机器人为研究对象,对其动力学建模及轨迹跟踪控制进行了研究;应用Lagrange方法建立了混合驱动柔索并联机器人系统的动力学模型;针对具有非线性、时变特性以及带有可重复时变干扰的混合驱动柔索并联机器人动态系统模型,设计了一种控制增益随迭代次数变化的自适应迭代学习控制策略,并采用Lyapunov函数证明了该控制器的稳定性;数值仿真结果表明,在该控制器的作用下,混合驱动柔索并联机器人控制系统能够完成高精度跟踪期望轨迹,进一步验证了所建系统动态模型的正确性及控制策略的有效性。 Dynamics modeling and trajectory tracking control of a novel hybrid drive cable parallel manipulator(HDCPM)which has the advantages of both cable parallel mechanism and hybrid drive mechanism are investigated.A dynamics model for a HDCPM is established by using Lagrange method.For a HDCPM system with nonlinear,time-varying characteristics and repetitive time-varying disturbance,an adaptive iterative learning control strategy,which controls gain variations with the iterations,is designed.By means of Lyapunvo function,the stability of the controller is proved.The numerical simulation results indicate that an expect trajectory tracking of the HDCPM is achieved by the adaptive iterative learning controller,which illustrates the correctness of the built dynamic model and the validity of proposed control strategy.
作者 曹建斌 魏明生 赵海啸 Cao Jianbin;Wei Mingsheng;Zhao Haixiao(School of Mechatronic Engineering,Jiangsu Normal University,Xuzhou 221116,China;School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116,China)
出处 《机械传动》 北大核心 2022年第5期42-47,共6页 Journal of Mechanical Transmission
基金 江苏省高等学校自然科学研究项目(21KJB460004) 江苏省研究生实践创新计划项目(SJCX20_0909) 江苏师范大学博士学位教师科研项目(20XSRS015)。
关键词 混合驱动柔索并联机器人 动态模型 轨迹跟踪 自适应迭代学习控制 Hybrid drive cable parallel manipulator Dynamic model Trajectory tracking Adaptive iterative learning control
  • 相关文献

参考文献5

二级参考文献63

  • 1Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robotics by learning [J]. J of Robotic Systems, 1984, 1(2): 123-140.
  • 2Xu J X, Tan Y. A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties[J]. IEEE Trans on Automatic Control, 2002, 37(11): 1940-1945.
  • 3Kosmatopoulos E B, Polycarpou M M. Hign-order neural network structures for identification of dynamical systems[J]. IEEE Trans on Neural Networks, 1995, 6 (2) : 422-431.
  • 4Ge S S, Hang C C, Zhang T. A direct method for robust adaptive nonlinear control with guaranteed transient performance[J]. System & Control Letters, 1999, 37(5): 275-284.
  • 5Recker D, Kokotovic P, Rhode D. Adaptive nonlinear control systems containing a dead zone [C]. Proe of 30th IEEE Conf on Decision and Control. Brighton, 1991: 2111-2115.
  • 6Tao G, Kokotovic V. Adaptive control of plants with unknown dead-zones[J]. IEEE Trans on Automatic Control, 1994, 39(1): 59-68.
  • 7Jang J O. A deadzone compensator for a DC motor system using fuzzy logic control [J]. IEEE Trans on Systems, Man and Cybernatics, 2001, 31(1): 42-47.
  • 8Lewis F L, Tim W K, Wang L Z, et al. Dead-zone compensation in motion control systems using adaptive fuzzy logic control[J]. IEEE Trans on Control Systems Technology, 1999, 7(6): 731-741.
  • 9Selmie R R, Lewis F L. Dead-zone compensation in motion control systems using neural networks [J]. IEEE Trans on Automatic Control, 2000, 45(4): 602- 613.
  • 10Wang X X, Su C Y, Hong H. Robust adaptive control of a class of nonlinear systems with unknown dead-zone[J]. Automatica, 2004, 40(3): 407-413.

共引文献108

同被引文献25

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部