期刊文献+

基于双CNN的雷达信号调制类型识别方法 被引量:1

Radar Signal Modulation Type Recognition Based on Double CNN
下载PDF
导出
摘要 针对雷达工作波形复杂化、基于常规脉冲特征的雷达辐射源信号识别准确率下降的问题,提出双卷积神经网络(convolutional neural network,CNN)串联的网络结构,实现了9种常见雷达信号的分类识别。采用单个CNN结构时,可以准确识别其中4种调制类型,但是相位编码及其复合调制信号识别率低。这是由于相位编码中二进制相移键控(binary phase shift keying,BPSK)与四相相移键控(quadrature phase shift keying,QPSK)的时频特征具有相似性。本文采用双CNN串联的处理方式,其优势在于雷达信号调制参数不固定时,依然可以进行分类识别,具有较强适应性。仿真结果表明,当信噪比(signal-to-noise ratio,SNR)为0 dB时,9种调制信号的识别准确率高于95%。最后,通过仿真分析识别准确率与信噪比之间的关系,验证了该方法的可靠性. In view of the complexity of radar waveform and the decline of radar emitter signal recognition accuracy based on conventional pulse characteristics,a network structure of double CNN is proposed to realize the classification and recognition of 9 common radar signals.When using a single CNN structure,four modulation types can be identified accurately,but the recognition accuracy of phase coding and its composite modulation signals is intolerable.Because the time-frequency characteristics of BPSK and QPSK are similar.This paper adopts the processing method of double CNN structure,which has strong adaptability.Radar signals can still be classified and recognized when modulation parameters are not fixed.The simulation results show that the recognition accuracy of 9 modulation signals is higher than 95%when the signal-to-noise ratio(SNR)is 0 dB.Finally,the reliability of this method is verified by analyzing the relationship between recognition accuracy and SNR.
作者 金丽洁 武亚涛 JIN Lijie;WU Yatao(Nanjing Research Institute of Electronics Technology,Nanjing 210039,JiangSu,China)
出处 《空天防御》 2022年第1期66-70,共5页 Air & Space Defense
关键词 调制类型识别 CNN 相位编码 识别准确率 深度学习 modulation type recognition CNN phase encoding recognition accuracy deep learning
  • 相关文献

参考文献4

二级参考文献21

  • 1王兵,羿旭明.一种提取小波脊线的迭代算法[J].数学杂志,2005,25(3):295-298. 被引量:12
  • 2郑生华,徐大专,靳学明,章仁飞.基于时频分析的雷达侦察信号处理技术[J].重庆大学学报(自然科学版),2006,29(11):96-100. 被引量:10
  • 3Cohen L. Time-frequency Distributions [J]. A Review ,Proc. IEEE,1989,77(7):941-981.
  • 4Barkat B. A Blind Components Separation Procedure for FM Signal Analysis[J]. Proc. IEEE, 2002,42 (3) : 1425-1428.
  • 5Djurovi C I LJ. StankoviC:Influence of High Noise on the Instantaneous Frequency Estimation Using Time-frequency Distributions [J]. IEEE Sig. Proc. Let ,2000,7(11) :317-319.
  • 6[2]Choi H I, Wiliams W J. Improved time-frequency rep-resentation of multicomponet signals using exponential kernels. IEEE Trans Acoust. Speech, Signals Processing, 1989, 37(6): 862~871
  • 7郭昆 元书俊 朱守中.一种基于瞬时自相关的雷达信号脉内特征提取改进算法.仪器仪表学报,2008,29(8):554-556.
  • 8Fréin F,Rickard S.The Synchronized Short-time-fourier-transform:Properties and Definitions for Multichannel SourceSeparation[J].IEEE Transactions on Signal Processing,2011,59(1):91-93.
  • 9Lu Wenkai,Zhang Qiang.Deconvolutive Short-time FourierTransform Spectrogram[J].IEEE Signal Processing Letters,2009,16(7):576-579.
  • 10Wang Yong.New Time-frequency Distribution Based on ThePolynomial Wigner-ville Distribution and L Class of Wigner-villeDistribution[J].IET Signal Processing,2011,4(2):130-136.

共引文献40

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部