期刊文献+

具有阶段结构的SIS型传染病模型的动力学性质

Dynamic Properties of SIS Epidemic Model with Stage Structure
下载PDF
导出
摘要 研究了Beddington-DeAngelis型功能反应对一类具有阶段结构和SIS型传染病的捕食者食饵模型的动力学性质的影响.运用常数变易法证明了正解的存在性和解的有界性,结合特征方程得到了各平衡点局部稳定的条件,并通过Lyapunov函数和LaSalle不变原理获得了平衡点全局稳定的条件. The dynamic properties of a Beddington-DeAngelis type functional response predator-prey model with stage structure and SIS epidemic are studied.The existence and stability conditions of positive solutions are proved through the method of constant variation.The local stability conditions of each equilibrium point are obtained by using the characteristic equation,and the global stability conditions of each equilibrium point are obtained by using Lyapunov function and LaSalle invariance principle.
作者 刘晗嫣 谢景力 舒晴 LIU Hanyan;XIE Jingli;SHU Qing(College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)
出处 《吉首大学学报(自然科学版)》 CAS 2022年第1期20-25,共6页 Journal of Jishou University(Natural Sciences Edition)
关键词 捕食者食饵模型 阶段结构 SIS型传染病 Beddington-DeAngelis型功能反应 全局稳定 predator-prey model stage structure SIS epidemic Beddington-DeAngelis functional response global stability
  • 相关文献

参考文献8

二级参考文献33

  • 1耿春梅,甘文珍,周桦.一类具有阶段结构的捕食模型的稳定性[J].扬州大学学报(自然科学版),2006,9(1):9-14. 被引量:8
  • 2徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 3程晓云,胡志兴.一类具有阶段结构的自治传染病模型的稳定性[J].石家庄学院学报,2007,9(3):23-27. 被引量:4
  • 4[3]Lu Zhonghua,Chi Xuebin,Chen Lansun.Global attractivity of nonautonomous stage-structured population models with dispersal and harvest.Journal of Computational and Applied Mathematics,2004;166:411-425
  • 5[4]Xiao Yanni,Chen Lansun.Modeling and analysis of a predator-prey model with disease in the prey.Math Biosci,2001;171:59-82
  • 6[5]Xiao Yanni,Chen Lansun.A ratio-dependent predator-prey model with disease in the prey.Appl Math Compu,2002;131:394-414
  • 7Walter G Alello, Freedman H I. A time-delay of single species growth with stage structure[J]. Mathematical Biosciences, 1990,101 : 139-153.
  • 8Walter G Alelto, Freedman H I, Wu J. Analysis of a model represening stage-structured populations growth with stage- dependent time delay[J]. SIAM J. Appl. Math,1992(3)1855-869.
  • 9Capasso. Mathematical structures of epidemic systems[ M ] Berlin, Heidelberg: Springer- Verlag, 1993.
  • 10F. Brauer and P. van den Driessche. Models for translation of disease with immigration of infectives[ J] .Math. Biosci. 2001,171 : 143 - 154.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部