期刊文献+

基于相空间重构和PSO-SVM的大型商场网络流量预测 被引量:1

Large Shopping Mall Network Traffic Prediction Based on Phase Space Reconstruction and PSO-SVM
下载PDF
导出
摘要 准确高效的预测人流多变场景的移动网络流量,既可以保障网络安全稳定运行,又可以帮助运营商提前做好资源调度和分配。针对大型商场等人流多变场景移动网络流量预测问题,提出一种基于相空间重构的PSO-SVM预测方法。具体的,将网络流量数据进行预处理,通过相空间重构的方法构建学习样本,并采用支持向量机(SVM)对学习样本进行预测。同时,利用粒子群算法(PSO)、遗传算法(GA)和交叉验证优化支持向量机中的参数,得到SVM的最佳优化方案。实验结果表明,经相空间重构后的PSO-SVM模型具有较好的预测性能。 Accurate and efficient prediction of mobile network traffic in changeable scenes of human flow can not only ensure the stable operation of network security but also help operators to schedule and allocate resources in advance.Aiming at the problem of mobile network traffic prediction in large shopping malls and other scenes with variable traffic,a PSO-SVM prediction method based on phase space reconstruction is proposed.Specifically,the network traffic data is preprocessed,and the learning samples are constructed by the phase space reconstruction method,and the support vector machine(SVM)model is used to predict the learning samples.At the same time,particle swarm optimization(PSO),genetic algorithm(GA),and cross-validation are used to optimize the parameters in the support vector machine to obtain the best optimization scheme of SVM.The experimental results show that the PSO-SVM model reconstructed by phase space has good prediction performance.
作者 李子乔 陈华亮 LI Ziqiao;CHEN Hualiang(College of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2022年第2期32-37,共6页 Journal of Jiamusi University:Natural Science Edition
基金 国家重点研发项目(2018YFF0301000)。
关键词 支持向量机 相空间重构 网络流量预测 参数优化 粒子群算法 support vector machine phase space reconstruction network traffic prediction parameter optimization particle swarm optimization algorithm
  • 相关文献

参考文献7

二级参考文献74

共引文献126

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部