期刊文献+

基于稀疏自动编码器和支持向量机的矿渣立磨主减速机故障预警研究

Research on Fault Early Warning of Main Reducer of Slag Vertical Mill Based on Sparse Automatic Encoder and Support Vector Machine
下载PDF
导出
摘要 立磨主减速机是矿渣立磨的核心设备,然而由于设备结构和工作条件的复杂性,难以对其进行准确的故障诊断。提出了一种基于小波包、稀疏自动编码器和支持向量机对立磨主减速机进行故障预警和诊断的方法。利用小波包对立磨主减速机的振动信号构建能量特征向量,通过稀疏自动编码器对特征向量进行数据重构,利用重构数据将支持向量机训练成具有多重感知功能的分类器。实验研究结果表明,基于小波包、稀疏自动编码器和支持向量机的故障诊断方法可以有效地对故障进行分类。按照该方法针对立磨主减速机开发故障预警模型,利用立磨主减速机故障时的振动信号,建立故障诊断模型,实现立磨主减速机的故障预警和故障诊断。 The main reducer of vertical mill is the core equipment of slag vertical mill.However,due to the complexity of equipment structure and working conditions,it is difficult to carry out accurate fault diagnosis.This paper presents a method of fault early warning and diagnosis for the main reducer of the vertical mill based on wavelet packet,sparse automatic encoder and support vector machine.The wavelet packet is used to construct the energy feature vector from the vibration signal of the main reducer of the vertical mill.The data of the feature vector is reconstructed by the sparse automatic encoder,and the reconstructed data is used to train the support vector machine into a classifier with multiple sensing functions.The experimental results show that the fault diagnosis method based on wavelet packet,sparse automatic encoder and support vector machine can effectively classify the faults.According to this method,the fault early warning model is developed for the main reducer of vertical mill,and the fault diagnosis model is established by using the vibration signal of the main reducer of vertical mill,so as to realize the fault early warning and fault diagnosis of the main reducer of vertical mill.
作者 朱全 纪萍 黄鲁 韩飞坡 ZHU Quan;JI Ping;HUANG Lu;HAN Feipo(School of Intelligent Manufacturing Engineering,Ma′anshan University,Ma′anshan Anhui 243100,China;School of Electrical Information Engineering,Wanjiang University of Technology,Ma′anshan Anhui 243031,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2022年第2期83-88,共6页 Journal of Jiamusi University:Natural Science Edition
基金 安徽省高校自然科学研究重点项目(KJ2021A1235) 安徽省高校自然科学研究重点项目(KJ2021A1215) 马鞍山学院校级科研基金项目(QS2020014)。
关键词 故障预警 小波包 稀疏自动编码器 支持向量机 减速机 fault early warning wavelet packet sparse automatic encoder support vector machine reducer
  • 相关文献

参考文献8

二级参考文献59

  • 1SUN Yan-jing ZHANG Shen MIAO Chang-xin LI Jing-meng.Improved BP Neural Network for Transformer Fault Diagnosis[J].Journal of China University of Mining and Technology,2007,17(1):138-142. 被引量:42
  • 2袁胜发,褚福磊,何永勇.基于网格支持矢量机的涡轮泵多故障诊断[J].机械工程学报,2007,43(4):152-158. 被引量:9
  • 3嵇斗,王向军.基于D-S证据理论和BP算法的直流电机故障诊断研究[J].船电技术,2007,27(4):204-206. 被引量:6
  • 4胡昌华.基于MATLAB的系统分析与设计-小波分析[M].西安:西安电子科技大学出版社,1992..
  • 5Wickerhauser M V.Lecture on wavelet packet algorithm[J].Math. Depart. Washington Univ., St. Lowis Missouri,U.S.,1991.
  • 6GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 7HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 8KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 9BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 10WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.

共引文献486

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部