期刊文献+

基于加权差分电流的直流故障电弧检测方法 被引量:7

DC Arc Fault Detection Method Based on Weighted Differential Current
下载PDF
导出
摘要 为了解决低压直流系统中传统电弧故障检测方法精确度不足及对不同系统通用性较差的问题,本文提出一种新的基于加权差分电流的直流电弧故障检测方法。首先搭建直流源实验平台,开展串联直流电弧高频特性实验,利用快速傅里叶变换提取电弧电流的特征频段为20~30 kHz、40~50 kHz和55~65 kHz。然后,研究电极材料和负载类型对电弧特征频率的影响,实验结果表明直流电弧的特征频段不随电极材料和负载类型改变。将3个特征频段内幅值的最大值I_(max)、幅值之和I_(sum)以及幅值的标准差I_(std)作为特征参量。基于对电弧电流特征频段和特征参量的双重加权差分,利用差分结果是否大于阈值0.5作为直流故障电弧检测判据。最后,在低压直流系统和光伏系统中验证所提出检测方法的有效性。检测方法能够准确区分开关动作与负载突变等系统正常操作。该方法克服了传统单一频段单一指标检测方法的不稳定性,能够有效检测直流电弧故障,提高检测的准确性,并在光伏系统中验证了检测方法的通用性。检测方法对保障低压直流系统的安全稳定运行具有重要的应用价值。 To solve the problems of low accuracy and poor universality of traditional arc fault detection methods in the LV DC system,a new DC arc fault detection method based on weighted differential current is proposed in this paper.Firstly,a DC experimental platform was set up for the high frequency characteristic tests of serial DC arc fault.And its characteristic frequency bands were extracted as 20-30 kHz,40-50 kHz and 55-65 kHz by fast Fourier transform.The influence of electrode materials and load types on arc characteristic frequency was studied,which show it does not change with electrode material and load type.Then the maximum amplitude,I_(max),sum of amplitude,I_(sum) and standard deviation of amplitude,I_(std) in the three characteristic frequency bands were taken as characteristic parameters.Based on the double weighted difference of characteristic frequency bands and characteristic parameters of the arc current,the criterion of DC arc fault detection is whether the difference result is greater than the threshold value 0.5 Finally,the validity of the proposed method was verified in the LV DC system and photovoltaic system.The results show that the proposed method can accurately distinguish the normal operation of the system,such as switch action and sudden load change,overcome the instability of traditional single frequency-band and single index detection methods,effectively detect DC arc faults,and improve the detection accuracy.Its universality is verified in photovoltaic systems.Moreover,it can play a crucial role in ensuring safe and stable operation of LV DC systems.
作者 邸振国 熊庆 张琛 李瑞 汲胜昌 DI Zhenguo;XIONG Qing;ZHANG Chen;LI Rui;JI Shengchang(State Key Laboratory of Electrical Insulation of Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China;School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第5期141-148,共8页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(52007149)。
关键词 低压直流系统 光伏系统 故障电弧 电弧检测 加权差分电流 low voltage DC system photovoltaic system arc fault arc detection weighted differential current
  • 相关文献

参考文献6

二级参考文献102

  • 1李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型[J].计算机仿真,2006,23(6):239-243. 被引量:86
  • 2杨建红,张认成,杜建华.基于多信息融合的故障电弧保护系统的应用研究[J].高压电器,2007,43(3):194-196. 被引量:16
  • 3李兴文,陈德桂.空气开关电弧的数学模型及其特性的研究综述[J].高压电器,2007,43(4):269-273. 被引量:18
  • 4王超.电弧故障断路器的研究[D].沈阳:沈阳工业大学,2009.
  • 5SPYKER R,SCHWEICKART D L,HORWATH J C,et al.An evaluation of diagnostic techniques relevant to arcing fault current interrupters for direct current power systems in future aircraft[C]//Electrical Insulation Conference and Electrical Manufacturing Expo..USA:[s.n.],2005:146-150.
  • 6AMMERMAN R F,GAMMON T,SEN P K,et al.DCarc models and incident-energy calculations[J].IEEE Transactions on Industry Applications,2010,46(5):1810-1819.
  • 7MECKLER P,LINDMAYER M.Simulation of ac arc faults in aircraft electrical networks[C]//21st International Conference on Electrical Contacts.Switzerland:[s.n.],2002:290-295.
  • 8NAIDU M,SCHOEPF T J,GOPALAKRISHNAN S.Arc fault detection scheme for 42 V automotive DC networks using current shunt[J].IEEE Transactions on Power Electronics,2006,21(3):633-639.
  • 9MOMOH J A,BUTTON R.Design and analysis of aerospace dc arcing faults using fast fourier transformation and artificial neural network[C]//IEEE Power Engineering Society General Meeting.USA:[s.n.],2003:788-793.
  • 10GUO Yunmei,WANG Li,WU Zhuqi,et al.Wavelet packet analysis applied in detection of low-voltage DC arc fault[C]//Industrial Electronics and Applications.Xi’an:[s.n.],2009:4013-4016.

共引文献166

同被引文献86

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部