期刊文献+

基于结合聚类与SVM参数寻优的短期电力负荷预测方法 被引量:18

A Short-Term Power Load Forecasting Method Based on Combining Clustering and SVM Parameter Optimization
下载PDF
导出
摘要 预先作出准确的负荷预测有助于稳定电网市场,是电网安全调度与平稳运行的基础。考虑到目前研究的单一预测方法存在的不足,文章探讨了负荷变化趋势与温度、日类型等特征之间的关系,并提出了一种K-Means聚类与交叉验证和网格优化相结合的支持向量机(support vector machine,SVM)短期负荷预测方法(STLF-SK)。所提方法包括负荷数据预处理、K-Means聚类、模型参数优化以及模型的训练等步骤。在实际电力负荷数据集下,与LSTM、决策树和线性回归算法进行对比,实验结果表明,提出的STLF-SK方法有更高的预测准确性和平稳性,取得了较好的预测效果。 Making accurate load forecasting in advance helps stabilize the power market and is the basis for the safe dispatching and smooth operation of the power grid.However,considering the shortcomings of the single prediction method currently studied,this paper explores the relationship between load variation trend and certain characteristics such as temperature and day types,and proposes a SVM(support vector machine)short-term load forecasting method with the combination of K-Means clustering and parameter optimization by means of cross-validation and grid search(STLF-SK).The process of this method includes load data preprocessing,K-Means clustering,model parameter optimization,and model training.The simulation is completed under the data set of an actual district,and LSTM,decision tree and linear regression algorithm are selected for the experiment to make a comparison.The results of all experiments show that the method(STLF-SK)is more stable and has higher forecasting accuracy to achieve better forecasting effect.
作者 胡乙丹 姜吉祥 董霞 HU Yidan;JIANG Jixiang;DONG Xia(Zijin College,Nanjing University of Science and Technology,Nanjing 210023,China;Nantong Power Supply Branch,State Grid Jiangsu Electric Power Co.,Ltd.,Nantong 226006,China;Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《电力信息与通信技术》 2022年第5期54-60,共7页 Electric Power Information and Communication Technology
关键词 短期负荷预测 K-MEANS 交叉验证 网格搜索 SVM short-term load forecasting K-Means cross-validation grid search SVM
  • 相关文献

参考文献20

二级参考文献231

共引文献632

同被引文献263

引证文献18

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部