期刊文献+

基于调整样本值域的自正则结构性变化的检验

An Adjusted-range Based on Self-normalized Statistic for Testing Structural Breaks
下载PDF
导出
摘要 样本值域被广泛地应用在金融数据波动性分析中,且可以更好地检测高偏度和(或)高峰度的非高斯时间序列的远距离依赖性。本文拓展了Lobato(2001)以及Shao(2010)提出的基于部分和方差的长期方差估计值的自正则统计推断,借鉴Hong和Li(2021)采用部分和调整样本值域的长期方差估计值为自正则因子,设计了一个新的基于调整样本值域的G_(n)^(R)统计量。与Shao和Zhang(2010)提出的G_(n)^(R)统计量类似,基于调整样本值域的G_(n)^(R)统计量也可以应用在期望、相关系数、条件方差等序列的结构性变化检验中,且由于调整样本值域的鲁棒性,其更适用于金融数据分析,具有广泛的应用前景。最后,本文对我国股票市场主要指数的波动性进行了结构性变化检验,并发现波动性的结构性变化普遍存在。 The sample range has been commonly used in modelling volatility of financial data and can detect long-range dependence in non-Gaussian time series with high skewness and/or kurtosis.This paper extends the self-normalization related statistical inference of Lobato(2001)and Shao(2010),which is based on the long run variance estimator of the variance of the partial sum,proposes the use of the adjusted-range of the partial sum as a self-normalizer instead based on Hong and Li(2021),and introduces a new self-normalized adjusted-range based statistic.Similar to the statistic G_(n)^(R)proposed by Shao and Zhang(2010),the G_(n)^(R) statistic based on adjusted-range of the partial sum can be applied to tests for structural breaks in various quantities such as expectation,autocorrelation coefficients,conditional variances,etc.This approach,therefore,has wide applicability and is more suitable to the analysis of financial data.Finally,this paper applies the proposed test statistic for structural breaks in the volatilities in the major Chinese stock indices,finding that structural breaks are common themes in Chinese stock markets.
作者 洪永淼 孙佳婧 McCabe Brendan 汪寿阳 Hong Yongmiao;Sun Jiajing;McCabe Brendan;Wang Shouyang
出处 《统计研究》 CSSCI 北大核心 2022年第4期122-133,共12页 Statistical Research
基金 国家自然科学基金面上项目“基于调整样本值域的自正则时间序列分析”(72173120) 国家自然科学基金基础科学中心项目“计量建模与经济政策研究”(71988101)。
关键词 自正则 结构性变化检验 近似线性统计量 Self-normalization Structural Break Tests Approximately Linear Statistic
  • 相关文献

参考文献2

二级参考文献25

  • 1刘成彦,胡枫,王皓.QFII也存在羊群行为吗?[J].金融研究,2007(10A):111-122. 被引量:66
  • 2Brodsky B E, Darkhovskay B S. Nonparametric Methods in Change-Point Problems[M]. Dordrecht, Netherlands: Kluwer, 1993.
  • 3Altissimo F, Corradi V. Strong rules for detecting the number of breaks in a time series [J]. Journal of Econometrics, 2003,117.- 207-244.
  • 4Juhl T, Xiao Z. Testing for changing mean monotonic power[J]. Journal of Econometrics, 2009,148:14-24.
  • 5Perron P. Dealing with structural breaks[C]//Palgrave Handbook of Econometric, Econometric Theory. Basingstoke, Palgrave Macmillan, 2006.. 278-352. Vol. 1.
  • 6Crainiceanu C M, Vogelsang T J. Spectral density bandwidth choice.. Source of nonmonotonic power for tests of a mean shift in a time series[J]. Journal of Statistical Computation and Simulation, 2007, 77.. 457-476.
  • 7Shao X. A self-normalized approach to confidence interval construction in time series[J]. Journal of the Royal Statistical Society, Ser B, 2010, 72.. 343-336.
  • 8Shao X, Zhang X. Testing for change points in time series [J]. Journal of the American Statistical Association, 2010,105(491) : 1 228-1 240.
  • 9Phillips P C B. Time series regression with unit roots [J]. Econometrica, 1987, 55: 277-301.
  • 10Lobato I N Testing that a dependent process is uncorrelated[J]. Journal of the American Statistical Association, 2001, 96 : 1 066-1 076.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部