期刊文献+

基于深度卷积神经网络和迁移学习的纹理图像识别 被引量:19

Texture Image Recognition Based on Deep Convolutional Neural Network and Transfer Learning
下载PDF
导出
摘要 针对传统的纹理图像识别方法设计过程复杂,而现有的基于深度学习的方法未能有效解决纹理图像样本数量偏少而导致识别精度不佳的问题,提出一种基于深度卷积神经网络和迁移学习的纹理图像识别方法.首先利用在大规模ImageNet图像数据集上预先训练的深度学习模型构造新的迁移学习模型;然后设置合理的模型超参数,并将训练损失、验证损失以及训练集和验证集深度特征距离的加权和作为训练的代价函数;最后通过逐层训练和验证确定最佳的迁移学习模型.实验结果表明,所提方法在CUReT,KTH-TIPS,UIUC,UMD和NewBarkTex纹理数据库上分别取得了99.76%,99.87%,99.80%,100.00%和94.01%的识别精度,具有良好的稳健性和识别能力. The traditional texture image recognition methods have a complex design process,and the existing methods based on deep learning can’t effectively solve the problem of insufficient texture image samples which lead to unsatisfying recognition accuracy.To solve the above problems,a texture image recognition method based on deep convolutional neural network and transfer learning is proposed.Firstly,a new transfer learning model is constructed by using the deep learning model pretrained on the large-scale ImageNet image dataset.Secondly,the reasonable model super-parameters are set,and the weighted sum of the training loss,the validation loss,and the deep feature distance between the training set and the validation set is taken as the cost function of training process.Finally,the best transfer learning model is determined by layer-by-layer training and validation.The experimental results show that the proposed method achieves 99.76%,99.87%,99.80%,100.00%and 94.01%recognition accuracies on the CUReT,KTH-TIPS,UIUC,UMD and NewBarkTex texture datasets respectively,and has good robustness and recognition ability.
作者 王军敏 樊养余 李祖贺 Wang Junmin;Fan Yangyu;Li Zuhe(School of Information Engineering,Pingdingshan University,Pingdingshan 467000;School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129;School of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第5期701-710,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61702462,61873246) 河南省科技厅科技攻关项目(202102210331,222102210214,222102210010) 平顶山学院博士科研启动基金(PXY-BSQD-202004)。
关键词 纹理图像识别 深度卷积神经网络 迁移学习 特征提取 texture image recognition deep convolutional neural network transfer learning feature extraction
  • 相关文献

参考文献4

二级参考文献38

  • 1张志龙,李吉成,沈振康.基于局部沃尔什变换的纹理特征提取方法研究[J].信号处理,2005,21(6):589-596. 被引量:6
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 4Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 5Liu Li, Zhao Lingjun, Long Yunli, et al. Extended local binary patterns for texture classification[J]. Image and Vision Com- puting, 2012, 30(2): 86-99.
  • 6Guo Zhenhua, Zhang Lei, Zhang D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663.
  • 7Maani R, Kalra S, Yang Y H. Noise robust rotation invari- ant features for texture classification[J]. Pattern Recogni- tion, 2013, 46(8): 2103-2116.
  • 8Liu Li, Long Yunli, Fieguth P W, et al. BRINT: binary rota- tion invariant and noise tolerant texture classification[J]. IEEE Transactions on Image Processing, 2014, 23(7): 3071-3084.
  • 9Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifi- cation with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25: Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, USA, Dec 3-6, 2012:1097-1105.
  • 10Zeiler M D, Fergus R. Visualizing and understanding convo- lutional networks[C]//LNCS 8689: Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzer- land, Sep 6-12, 2014. Berlin, Heidelberg: Springer, 2014: 818-833.

共引文献497

同被引文献165

引证文献19

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部