期刊文献+

基于高斯采样的区域多元化图像风格迁移方法 被引量:4

Area Diversified Style Transfer Based on Gaussian Sampling
下载PDF
导出
摘要 随着深度学习的迅速发展,图像风格迁移成为计算机视觉领域的研究热点之一.针对现有方法难以对内容图像中局部相似区域进行有效风格迁移的问题,提出基于高斯采样的区域多元化图像风格迁移方法.首先,通过编码器提取图像特征;然后,在特征空间中将内容特征、风格特征和从风格图像所处的高斯分布中采样得到的风格特征融合;最后,通过解码器重建风格化图像.在WikiArt和Microsoft COCO数据集上进行实验,并使用内容损失和多尺度风格损失评价指标进行量化度量.实验结果表明,与现有方法相比,所提方法能有效地降低生成图像的风格损失,使生成图像的整体风格更加统一,呈现出更好的视觉效果. With the rapid development of deep learning,image style transfer is currently one of the most actively explored fields in computer vision.Aiming at the problem that the existing methods are difficult to transfer the style of the local similar area in the content image,a novel area diversified style transfer method is proposed.Firstly,the image features are extracted through the encoder.Then,the content features,style features and style features sampled from the Gaussian distribution of the style image are fused in the feature space.Finally,the stylized image is reconstructed through the decoder.Experiments are conducted on WikiArt and Microsoft COCO datasets,and the content loss and multi-scale style losses are used as the quantitative measurement.The experimental results show that,compared with the existing methods,this method can effectively reduce the style loss of the generated images,make the overall style of the generated images more unified,and present a better visual effect.
作者 李文书 赵朋 尹灵芝 李绅皓 Li Wenshu;Zhao Peng;Yin Lingzhi;Li Shenhao(College of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第5期743-750,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(31771224) 国家科技部重点研发计划重点专项课题(2018YFB1004901) 浙江省自然科学基金(LY17C090011,LGF19F020009)。
关键词 图像风格迁移 卷积神经网络 特征变换 高斯分布 高斯采样 image style transfer convolutional neural network feature transformation Gaussian distribution Gaussian sampling
  • 相关文献

参考文献2

二级参考文献51

  • 1Wci L-Y, Levoy M. Fast texture synthesis using tree-structured vector quantization [ A ]. In : Proceedings of SIGGRAPH [ C ], New Orleans, Louisiana, USA, 2000:479 - 488.
  • 2Ashikhmin M. Synthesizing natural textures[ A]. In: Proceedings of ACM Symposium on Interactive 3 D Graphics [ C ] , Chapel Hill, North Carolina, USA, 2001:217 - 226.
  • 3Zelinka S, Garland M. Towards real-time texture synthesis with the jump map[ A ]. In: Proceedings of 13th Eurographics Workshop on Rendering[ C], Pisa, Italy, 2002:99 - 104.
  • 4Xu Y, Guo B, Shum H-Y. Chaos Mosaic: Fast and Memory Efficient Texture Synthesis [ R ]. Technical Report MSR-TR-2000-32, Microsoft Research, Seattle,WA, USA, 2000.
  • 5Efros A, Freeman W T. Image quilting for texture synthesis and transfer[ A ]. In: Proceedings of SIGGRAPH [ C ] , Los Angeles, California, USA, 2001:341 - 346.
  • 6Liang L, Liu C, Xu Y, et al. Real-time Texture Synthesis by Patchbased Sampling[ R]. Technical Report MSR-TR-2001-40, Microsoft Research, Seattle ,WA USA, 2001.
  • 7Cohen Michael F, Jonathan Shade, Stefan Hiller. Wang tiles for image and texture generation [ J]. ACM Transactions on Graphics, 2003, 22 (3) :287 - 294.
  • 8Charalampidis Dimitrios. Texture synthesis based on cluster transition probabilities[ J]. Proceedings of SPIE, 2003, 5108:327 - 338.
  • 9Nealen Andrew, Alexa Marc. Hybrid texture synthesis [ A ]. In: Proceedings of 14th Eurographics Workshop on Rendering [ C ] , Leuven, Belgium, 2003:97 - 105.
  • 10Lee Tong-yee, Yan Chung-ren. Feature-based texture synthesis [ A]. In: Proceedings of International Conference on Computational Science and its Applications[ C ], Singapore, 2005:1043 -1049.

共引文献38

同被引文献30

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部