期刊文献+

基于Jackknife模型平均的社会用电量预测研究 被引量:1

Social Electricity Consumption Forecasting Based on Jackknife Model Averaging
原文传递
导出
摘要 针对社会用电量波动的复杂性,文章将Jackknife模型平均理论引入社会用电量分析与预测研究中,通过加权平均不同模型的预测值,最大限度减少有用信息的遗失,以提高社会用电量预测准确度.通过选取中国和美国不同时期社会用电量数据集,并使用各类预测误差指标以及Diebold-Mariano检验法,来验证所提出的Jackknife模型平均方法的有效性.研究结果表明:Jackknife模型平均方法可以有效降低单个社会用电量预测模型的预测误差,为用电量预测提供了一种新的建模框架. The accurate prediction of electricity consumption points out the fluctuation range of electricity consumption in a given time window in the future,which not only provides important information for power supply enterprises,but also an important basis for power departments to formulate relevant policies.In view of the complexity of electricity consumption fluctuations,the Jackknife model average(JMA) theory is employed for electricity consumption forecasting.This technique maximizes the utilization of various information by weighting the predicted values of different models,and finally improves the accuracy of electricity consumption prediction.Furthermore,the forecasting performance of the JMA method is evaluated and compared with seven benchmark models on the basis of accuracy measures and Diebold-Mariano test by selecting the monthly electricity consumption data sets of China and the United States in different periods.The experimental results show that the Jackknife model average method can effectively reduce the prediction error of a single electricity consumption prediction model and is an effective electricity consumption prediction model.
作者 张小圆 邓昌瑞 黄艳梅 鲍玉昆 ZHANG Xiaoyuan;DENG Changrui;HUANG Yanmei;BAO Yukun(Center for Big Data Analytics,Jiangxi University of Engineering,Xinyu 338029;School of Management,Huazhong University of Science and Technology,Wuhan 430074)
出处 《系统科学与数学》 CSCD 北大核心 2022年第3期588-598,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(71871101)资助课题。
关键词 社会用电量 Jackknife模型平均 非参数估计 模型预测 Electricity consumption forecasting Jackknife model average method nonparametric estimation prediction model
  • 相关文献

参考文献5

二级参考文献42

  • 1黄安强,肖进,汪寿阳.一个基于集成情境知识的组合预测方法[J].系统工程理论与实践,2011,31(S1):55-65. 被引量:12
  • 2黄文强.支持向量机在航空运输量预测中的应用[J].计算机工程,2005,31(B07):253-255. 被引量:4
  • 3洪永淼.计量经济学的地位、作用和局限[J].经济研究,2007,42(5):139-153. 被引量:132
  • 4N Hjort and G Claeskens. Frequentist model average estimators [ J ]. Journal of the American Statistical Association,2003 (4) : 879 -899.
  • 5Z Yuan and Y Yang. Combining linear regression models:When and how [ J]. Journal of the American Statistical Association,2005 (4) : 1202 - 1214.
  • 6G Leung and A Barron. Information theory and mixing least-squares regressions [ J 1. IEEE Transactions on Information Theory, 2006 (8) :3396 -3410.
  • 7J Bates and C Granger. The combination of forecasts [ J ], Operations Research Quarterly, 1969 (4) :451 - 468.
  • 8I A Wan, X Zhang and G Zou. Least squares model averaging by Mallows criterion [ J ]. Journal of Econmnetrics, 2010 ( 2 ) : 277 -283.
  • 9N Longford. Editorial: Model selection and efficiency--is ' Which model... 7' the right question [ J], Journal of the Royat Statistical Society A ,2005 ( 3 ) :469 - 472.
  • 10C Min and A Zellner. Bayesian and non-Bayesian methods for combining models and forecasts with applications to torecasting international growth rates [ J ]. Journal of Econometrics, 1993 ( l ) : 89 - 118.

共引文献61

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部