期刊文献+

改性膨润土强化混凝去除再生水中菲

Modified bentonite enhanced coagulation to remove phenanthrene from reclaimed water
下载PDF
导出
摘要 以纳米四氧化三铁(Fe_(3)O_(4))和十六烷基三甲基溴化铵(CTAB)对膨润土有机磁化改性后制得复合材料FCB,以FCB作为助凝剂协同絮凝剂聚合氯化铝(PAC)对再生水中的菲进行强化混凝去除实验。结果表明,改性后负载上了Fe_(3)O_(4)和CTAB,层间距扩大,有机碳含量增加,FCB投加量320 mg/L,PAC投加量15 mg/L时,菲去除率达94.58%,剩余浊度为0.8 NTU;随着FCB投加量增加菲去除率不断增加,过度投加FCB会使浊度变大:菲混凝最佳pH为6~7;随初始浊度增加,菲去除率小幅度提高。 The composite material FCB is prepared after the organic magnetization of nano-ferric oxide(Fe_(3)O_(4))and cetyltrimethylammonium bromide(CTAB)on the bentonite,and the FCB is used as a coagulant aid to synergize the flocculant to polymerize and chlorinate aluminum(PAC)conducted an enhanced coagulation removal experiment on phenanthrene in the reclaimed water.The results showed that the original soil was loaded with Fe_(3)O_(4) and CTAB,the interlayer spacing was enlarged,and the organic carbon content increased.The dosage of FCB was 320 mg/L and the dosage of PAC was 15 mg/L,the removal rate of phenanthrene reaches 94.58%,and the remaining turbidity is 0.8 NTU;with the increase of FCB dosage,the removal rate of phenanthrene continues to increase,and excessive addition of FCB will increase the turbidity:the best pH of phenanthrene coagulation is 6~7;as the initial turbidity increases,the phenanthrene removal rate increases slightly.
作者 亓祥坤 洪雷 丁倩云 胡正昱 QI Xiang-kun;HONG Lei;DING Qian-yun;HU Zheng-yu(School of Environmental and Municipal Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《应用化工》 CAS CSCD 北大核心 2022年第3期718-721,共4页 Applied Chemical Industry
基金 国家自然科学基金资助项目(21277065)。
关键词 膨润土 有机磁化改性 强化混凝 bentonite organic magnetization modification enhanced coagulation phenanthrene
  • 相关文献

参考文献2

二级参考文献28

  • 1周玉梅,刘晓勤,姚虎卿.π络合吸附分离技术的研究进展[J].石油化工,2005,34(10):1004-1009. 被引量:22
  • 2罗瑜,朱利中.阴-阳离子有机膨润土吸附水中苊的性能及机理研究[J].环境污染与防治,2005,27(4):251-253. 被引量:11
  • 3葛成军,俞花美.多环芳烃在土壤中的环境行为研究进展[J].中国生态农业学报,2006,14(1):162-165. 被引量:30
  • 4筱羽.真空熔融法合成聚己二酸-1,4-丁二醇酯二醇[J].宁波化工,2007(1):5-9. 被引量:4
  • 5Behl M, Lendlein A. SKape-memory polymers[J ]. Mater. Today,2007, 10 : 20-28.
  • 6Hu J, Zhu Y, Huang Hf et al. Recent advances in shape-memorypolymers: structure, mechanism, functionality, modeling andapplications[J]. Pix. Polym. Sci.,2012,37: 1720-1763.
  • 7Haloi D J, Ata S, Singha N K. Synthesis and characterization of allacrylic block copolymer/clay nanocomposites prepared viei surface"Iinitiated atom transfer radical polymerization (SI-ATRP) [ J ]. Ind.Eng. Chem. Res.,2012,51: 9760-9768.
  • 8Amin A, Sarkar R, Moorefield C N, et al. Synthesis of polymer-day nanocomposites of some vinyl monomers by surface-initiatedatom transfer radical polymerization [J]. Des. Monomers Polym.,2013,16: 528-536.
  • 9Djouani F, Herbst F, Chehimi M M, et al. Synthesis,characterization and reinforcing properties of novel, reactive clay/poly(glycidyl methacrylate) nanocomposites[J]. Constr. Build. Marer.,2011,25: 424-431.
  • 10Yin D, Liu J, Geng W, et al . Microencapsulation of hexadecane bysurface initiated atom transfer radical polymerization on a Pickeringstabilizer[J]. New J. Chem.,2015,39: 85-89.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部