期刊文献+

基于卷积神经网络的红木识别App设计与开发

Design and Development of Redwood Recognition App Based on Convolutional Neural Network
下载PDF
导出
摘要 为了实现对红木快速自动识别,笔者设计和开发了一款基于卷积神经网络的红木识别App。首先利用无损显微设备获取木材横切面和弦切面的微观构造图像,将其作为训练数据;其次在TensorFlow框架上构造MobileNet网络,创建数据集并进行训练,以得到红木识别模型;最后在此基础上设计和开发出红木识别App。所开发的App具有占用手机内存小、页面简洁明了等特点,方便用户通过手机实现红木类型的自动识别。 In order to realize fast and automatic identification of mahogany,the author designed and developed a mahogany identification app based on convolutional neural network.Firstly,the microscopic structural images of the wood cross-section and chord section are obtained by non-destructive microscopy equipment,and used as training data;Secondly,the MobileNet network is constructed on the TensorFlow framework,and the data set is created and trained to obtain the redwood recognition model;Finally,on this basis design and develop a redwood identification App.The developed App has the characteristics of small occupation of mobile phone memory,concise and clear pages,et al,which is convenient for users to realize automatic identification of mahogany types through mobile phones.
作者 许华杰 韦熳熠 李顺 沈焯凯 XU Huajie;WEI Manyi;LI Shun;SHEN Zhuokai(School of Computer and Electronic Information,Guangxi University,Nanning Guangxi 530004,China;Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning Guangxi 530004,China)
出处 《信息与电脑》 2022年第4期174-176,共3页 Information & Computer
基金 自治区级大学生创新创业训练计划项目资助(项目编号:202110593227) 崇左市科技计划项目(项目编号:崇科FB2018001) 广西壮族自治区科技计划项目(项目编号:2017AB15008)。
关键词 红木识别 卷积神经网络 App开发 redwood recognition convolutional neural network App development
  • 相关文献

参考文献4

二级参考文献40

  • 1黄鹏桂,赵璠,李晓平,关成,张严风,吴章康.基于计算机的木材特征提取和分类识别技术研究综述[J].世界林业研究,2020,33(1):44-48. 被引量:8
  • 2白雪冰,王克奇,王辉.基于灰度共生矩阵的木材纹理分类方法的研究[J].哈尔滨工业大学学报,2005,37(12):1667-1670. 被引量:88
  • 3于海鹏,刘一星,刘镇波.基于图像纹理特征的木材树种识别[J].林业科学,2007,43(4):77-81. 被引量:22
  • 4Chen GS, Zhao P (2012) Dynamic wood slice recognition using image blur information. Sens Actuators A 176:27-33.
  • 5Lavine BK, Davidson CE, Moores AJ, Griffiths PR (2001) Raman spectroscopy and genetic algorithms for the classification of wood types. Appl Spectrosc 55(8):960-966.
  • 6Moore AK, Owen NL (2001) Infrared spectroscopic studies of solid wood. Appl Spectrosc Rev 36(1):65-86.
  • 7Nakamura M, Masuda M, Shinohara K (1999) Multiresolutional image analysis of wood and other materials. J Wood Sci 45(1):10-18.
  • 8Orton CR, Parkinson DY, Evans PD, Owen NL (2004) Fourier transform infrared studies of heterogeneity, photodegradation, and lignin/hemicellulose ratios within hardwoods and softwoods. Aool Soectrosc 58(11): 1265-1271.
  • 9Packianather MS, Drake PR (2000) Neural networks for classifying images of wood veneer. Int J Adv Manuf Technol 16(6):424-433.
  • 10Phelps JE, Mcginnes EA (1983) Growth-quality evaluation of black walnut wood, Part 2---color analysis of veneer produced on different sites. Wood Fiber Sci 15(2): 177-185.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部