期刊文献+

基于Stacking模型的红枣品种分类识别 被引量:11

Classification and Recognition of Jujube Varieties Based on Stacking Model Fusion
下载PDF
导出
摘要 新疆红枣品种较多,在进行红枣加工过程中需要对不同品种进行区分。针对当前人工分类效率低成本高、机械分类难以确保综合品质的问题,提出了基于Stacking模型融合的红枣品种分类识别方法。试验采集5个品类的红枣图像11 280张,进行预处理,建立数据集。构建以VGG 16、ResNet 50、Densenet 121 3种不同的卷积神经网络为基学习器,逻辑回归为次级学习器的Stacking集成学习模型,进行了集成模型与单一神经网络模型以及不同基学习器组合的集成模型间的对比试验。结果表明:在红枣分类识别任务中,采用单一模型的最高准确率为88.30%,该研究提出的融合模型能够达到92.38%的准确率,分类准确率提升了4.60个百分点。 There are many varieties of jujube in Xinjiang, so it is necessary to distinguish different varieties before processing.Aiming at the problems of low efficiency and high cost of manual classification and difficult to ensure the comprehensive quality of mechanical classification, a classification and identification method of jujube varieties based on Stacking model fusion was proposed.11 280 jujube images of 5 categories were collected and preprocessed to establish a data set.A model that three different convolution neural network(VGG 16,ResNet 50,DenseNet 121) as base learner and logistic regression as secondary learner were constructed.The comparative experiments were carried out between the integrated model and single neural network model, as well as the integrated model with different combinations of base learners.The results showed that the accuracy of the proposed Stacking model was 92.38%,which was improved by 4.60 percentage points compared with that of the best single model(88.30%).This method can effectively improve the identification accuracy of jujube varieties and provide reference for Xinjiang jujube from manual sorting to automatic machine identification.
作者 余游江 喻彩丽 尚远航 胡艳培 吴刚 YU Youjiang;YU Caili;SHANG Yuanhang;HU Yanpei;WU Gang(College of Information Engineering.Tarim University,Alar,Xinjiang 843300;Shanwei Institute of Technology,Shanwei,Guangdong 516600;School of Information Engineering,Xinjiang Institute of Technology,Aksu,Xinjiang 843000)
出处 《北方园艺》 CAS 北大核心 2022年第8期139-148,共10页 Northern Horticulture
基金 国家自然科学基金地区基金资助项目(42061046) 新疆生产建设兵团科技攻关与成果转化资助项目(2015AC023) 塔里木大学校级研究生创新资助项目(TDGRI202047)。
关键词 模型融合 品种分类 红枣 卷积神经网络 基学习器 model fusion cultivar classification jujube neural network base learner
  • 相关文献

参考文献11

二级参考文献92

  • 1赵俊晔,于振文.我国小麦生产现状与发展小麦生产能力的思考[J].农业现代化研究,2005,26(5):344-348. 被引量:50
  • 2韦艳艳,李陶深.一种基于投票的Stacking方法[J].计算机工程,2006,32(7):199-201. 被引量:4
  • 3韩仲志,匡桂娟,刘元勇,严敏.基于形态和颜色特征的花生品质检测方法[J].花生学报,2007,36(4):18-21. 被引量:12
  • 4Bruckstein A, Donoho D, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and imagesEJ-. SIAM Review, 2009, 51(1): 34-81.
  • 5Wright J, Yang A Y, Ganesh A, et al. Robust face recog- nition via sparse representation [J-. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31 (2) 210-227.
  • 6Elhamifar E, Vidal R. Sparse subspace clustering EC-. IEEE Conference on Computer Vision and Pattern Recog- nition, 2009, 2790-2797.
  • 7Yu X, Liu K, Wu D, et al. Raisin quality classification u- sing least squares support vector machine (LSSVM) based on combined color and texture features [J-. Food and Bio- process Technology, 2012, 5(5)- 1552-1563.
  • 8Donoho D L. Compressed sensing I-J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 9T.saig Y, Donoho D k Extensions of compressed sensing [J]. Signal processing, 2006, 86(3): 549-571.
  • 10Cand6s E J, Romberg J, Tao T. Robust uncertainty prin- ciples: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Infor- mation Theory, 2006, 52(2): 489-509.

共引文献172

同被引文献103

引证文献11

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部