期刊文献+

PotholeEye^(+): Deep-Learning Based Pavement Distress Detection System toward Smart Maintenance 被引量:1

下载PDF
导出
摘要 We propose a mobile system,called PotholeEye+,for automatically monitoring the surface of a roadway and detecting the pavement distress in real-time through analysis of a video.PotholeEye+pre-processes the images,extracts features,and classifies the distress into a variety of types,while the road manager is driving.Every day for a year,we have tested PotholeEye+on real highway involving real settings,a camera,a mini computer,a GPS receiver,and so on.Consequently,PotholeEye+detected the pavement distress with accuracy of 92%,precision of 87%and recall 74%averagely during driving at an average speed of 110 km/h on a real highway.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期965-976,共12页 工程与科学中的计算机建模(英文)
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部