期刊文献+

Vortex dynamics and entropy generation in separated transitional flow over a compressor blade at various incidence angles 被引量:1

原文传递
导出
摘要 The transition process within a Laminar Separation Bubble(LSB)that formed on a compressor blade surface was investigated using Large Eddy Simulations(LESs)at a Reynolds number of 1.5×10;and incidence angles of 0°,+3°,and+5°.The vortex dynamics in the separated shear layers were compared at various incidence angles and its effects on the loss generation were clarified through entropy analysis.Results showed that transition onset,which was accurately identified by the Linear Stability Theory(LST),was significantly promoted at the increased incidence angle.As such,the development of LSB was suppressed and the relative role of viscous instability played in the transition process was weakened.At the incidence angle of 0°,two-dimensional spanwise vortices detached from the blade surface and roiled up periodically,which were further stretched and eventually evolved into large-scale hairpin vortices.As time passed,the fully developed hairpin vortices broke down into small-scale eddies.Meanwhile,the flow near the wall reversely ejected into the outer separated shear layers and a sweeping process happened subsequently,forcing the separated shear layers to reattach and accelerating the generation of turbulent fluctuations.By comparison,the strength of vortex rolling-up was weakened at higher incidence angles,and the vortex pairing and breakdown of large-scale vortices were less pronounced.Therefore,the level of turbulent fluctuations that generated in the separated shear layers was reduced.Detailed entropy analysis showed that the turbulent dissipation effect related to the Reynolds shear stresses determined the largest amount of positive entropy generation,which declined to a lower level as the incidence angle increased from 0°to+5°.Correspondingly,the profile loss was reduced by 50.4%.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期42-52,共11页 中国航空学报(英文版)
基金 co-supported by the National Natural Science Foundation of China(No.51836008) the National Science and Technology Major Project of China(No.2017-II-0010-0024)。
  • 相关文献

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部