期刊文献+

Numerical investigation of dynamic stall suppression of rotor airfoil via improved co-flow jet 被引量:5

原文传递
导出
摘要 The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a helicopter.However,little research has been carried on the flow control methods employed to suppress both the dynamic stall induced by a shock wave and the dynamic stall occurring at high angles of attack.The dynamic stall suppression of a rotor airfoil by Co-Flow Jet(CFJ)is numerically investigated in this work.The flowfield of the airfoil is simulated by solving Reynolds Averaged Navier-Stokes equations based on the sliding mesh technique.Firstly,to improve the effect of a traditional CFJ on suppressing rotor airfoil shock-induced dynamic stall,an improved CFJ—a CFJ-sloping slot is proposed.Research shows that the CFJsloping slot suppresses the shock-induced dynamic stall more effectively than a traditional CFJ.Moreover,the improved CFJ can also suppress the dynamic stall of rotor airfoil at low speed and high angles of attack.The improved CFJ proposed in this paper is an effective flow control method that simultaneously suppresses the dynamic stall of the advancing and retreating blades.The mechanism of the improved CFJ in suppressing the dynamic stall of the rotor airfoil is studied,and a comparison is made between the improved CFJ and the traditional CFJ in terms of dynamic stall suppression at high and low speed.Finally,the effect of improved CFJ parameters(the jet momentum coefficient,the position of the injection/suction slot,and the size of the injection/suction slot)on shock-induced dynamic stall suppression is analyzed.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期169-184,共16页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.12072305) Equipment Field Preresearch Fund,China(No.61402060205) the Open Fund from Rotor Aerodynamics Key Laboratory of China Aerodynamics Research and Development Center,China(No.RAL20190303) the Aeronautics Power Foundation,China(No.6141B09050347)。
  • 相关文献

参考文献7

二级参考文献63

  • 1Brentner KS, Farassat F.Helicopter noise prediction: the current status and future direction.J Sound Vib 1994;170(1):79-96.
  • 2Brentner KS, Lyrintzis AS, Koutsavdis EK.Comparison of computational aero acoustic prediction methods for transonic rotor noise.J Aircr 1997;34(4):531-8.
  • 3Morgans AS, Karabasov SA, Dowling AP, et al.Transonic helicopter noise.AIAA J 2005;43(7):1512-24.
  • 4Marze H, Gervais M, Martin P, et al.Acoustic flight test of the EC130 B4 in the scope of the FRIENDCOPTER project.In: 64th annual forum proceedings american helicopter society, vol.3.2008.p.2557-71.
  • 5Brentner KS, Farassat F.Modeling aerodynamically generated sound of helicopter rotors.Prog Aerosp Sci 2003;39(2-3):83-120.
  • 6Leishman JG.Principles of helicopter aerodynamics.Cam?bridge: Cambridge University Press; 2006.p.502-4.
  • 7Yu YH.Rotor blade-vortex interaction noise.Prog Aerosp Sci 2000;36(2):97-115.
  • 8Boxwell DA, Yu YH, Schmitz FH.Hovering impulsive noise?some measured and calculated results.Vertica 1979;3(1):35-45.
  • 9Prieur J, Rahier G.Comparison of Ffowcs Williams-Hawkings and Kirchhoff rotor noise calculations.AIAA-98-2376; 1998.
  • 10Lighthill MJ.On sound generated aerodynamically.I.General theory.Proc R Soc Lond A 1952;211(1107):564-87.

共引文献55

同被引文献69

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部