期刊文献+

Non-Fourier heat conduction analysis of a 2-D plate with inner cracks at arbitrary direction angles

原文传递
导出
摘要 This paper investigates the problem of a 2-D plate containing internal cracks at arbitrary angles to the heating surface under thermal shock.The finite difference method is applied to solve the temperature distribution and a difference scheme of the oblique crack is developed.For the first time,a non-Fourier heat transfer analysis method of a 2-D plate with inner cracks at arbitrary direction angles is established.Specifically,for a strip with an inner crack paralleling to the surface,numerical results are compared with the analytical solutions by rotating the boundary,and perfect agreement is obtained.Numerical experiments are further presented to investigate the influence of crack orientation angle and multi-crack distribution on non-Fourier heat conduction.
机构地区 School of Aeronautics
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期537-549,共13页 中国航空学报(英文版)
基金 supported by Aeronautical Science Foundation of China(No.20160953008)。
  • 相关文献

参考文献1

二级参考文献35

  • 1Tzou D Y. The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Transf,1995,38: 3231-3240.
  • 2Tzou D Y. A unified field approach for heat conduction from macro- to micro-scales. ASME J Heat Transf,1995,117: 8-16.
  • 3Cattaneo C. Sur une forme de l’equation de la chaleur eliminant le paradoxe d’ine propagation instantanee. C R Acad Sci,1958,247: 431-433.
  • 4Vernotte P. Les paradoxes de la theorie continue de l’equation de la chaleur. C R Acad Sci,1958,246: 3154-3155.
  • 5Chen H T,Lin J Y. Numerical analysis for hyperbolic heat conduc- tion. Int J Heat Mass Transf,1993,36: 2891-2898.
  • 6Ozisik M N,Tzou D Y. On the wave theory in heat conduction. Heat Transf-Trans ASME,116(1994): 526-535.
  • 7Tzou D Y. Macro- to Microscale Heat Transfer: The Lagging Be- havior. Washington,DC: Taylor & Francis,1997.
  • 8Glass D E,Ozisik M N,McRae D S,et al. Hyperbolic heat conduc- tion with temperature-dependent thermal conductivity. J Appl Phys, 1985,59: 1861-1865.
  • 9Pulvirenti B,Barletta A,Zanchini E. Finite-difference solution of hyperbolic heat conduction with temperature-dependent properties. Numer Heat Tranf A-Appl,1998,34: 169-183.
  • 10Al-Nimr M A,Naji M,Abdallah R I. Thermal behavior of a multi-layered thin slab carrying periodic signals under the effect of the dual-phase-lag heat conduction model. Int J Thermophys,2004,25: 949-966.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部