期刊文献+

一种基于自蒸馏的自适应恶意流量分类算法

A Self-adaptive Malicious Traffic Classification Algorithm Based on Self distillation
下载PDF
导出
摘要 针对目前已有文献中深度网络无法依据流量样本自适应选择网络层的问题,提出一种基于自蒸馏的自适应恶意流量分类算法。该方法首先将原始流量预处理后作为主干网络的输入,经自注意力网络层构建流量的权重分布,然后利用一维卷积神经网络提取流量分布中的显著特征作为后续网络输入。分支网络计算流量样本的熵值自适应选择网络层,若小于设定阈值则提前返回,否则由主干网络继续进行推理。经实验验证,该方法对于正常流量的平均检测率为99.9%,恶意流量的平均检测率为99.96%。恶意流量检测率较现有深度学习典型算法的检测率提升了2%,难样本检测率提升5%,且分支网络具有自适应功能,可避免后续的网络推理。 To address the problem that deep networks in the existing literature cannot adaptively select network layers based on traffic samples,a self-distillation-based adaptive malicious traffic classification algorithm is proposed.The method first pre-processes the original traffic as the input of the backbone network,constructs the weight distribution of the traffic by the self-attentive network layer,and then uses a one dimensional convolutional neural network to extract the significant features in the traffic distribution as the input of the subsequent network.The branch network adaptively selects the network layer according to the entropy of the traffic samples,and returns early if it is less than the set threshold,otherwise the backbone network continues the inference.Experimentally verified,the method has an average detection rate of 99.9%for normal traffic and 99.96%for malicious traffic.The detection rate of malicious traffic is 2%higher than that of existing deep learning typical algorithms,and the detection rate of difficult samples is 5%higher,and the branching network has an adaptive function to avoid subsequent network inference.
作者 潘嘉 翟江涛 PAN Jia;ZHAI Jiang-tao(School of Electronic Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China;School of Computer and Software,Nanjing University of Information Engineering,Nanjing 210044,China)
出处 《软件导刊》 2022年第5期61-66,共6页 Software Guide
基金 国家自然科学基金项目(61702235)。
关键词 恶意流量 自蒸馏 自注意力机制 自适应 malicious traffic self-distillation self-attentive mechanism self-adaptive
  • 相关文献

参考文献3

二级参考文献20

  • 1TOUCH J, LEAR E, MANKIN A, et aI. Internet assigned numbers authority (IANA)[EB/OL]. [2010-08-28]. http:// www.iana.orglassignments/port-numbers.
  • 2SEN S, SPATSCHECK 0, WAND D. Accurate, scalable in-network identification of P2P traffic using application signatures[C]//Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters (WWW'04). New York, USA: ACM, 2004: 512-521.
  • 3KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. BLINC: Multilevel traffic classification in the dark[C]/! ACM SIGCOMM. Phila-delphia, PA, USA: ACM, 2005.
  • 4ZUEV D, MOORE A W. Traffic classification using a statistical approach[C]//Proceedings of PAM 2005. Boston, USA: [s.n.], 2005.
  • 5DAINOTTI. A, PESCAPE. A, SANSONE C. Issues and future directions in traffic c1assification[J]. IEEE Network, 2012,26(1): 35-40.
  • 6GU Cheng-jie, ZHANG Shun-yi, SUN Yan-fei. Real-time encrypted traffic identification using machine learning[J]. Journal ofSofiware, 2011, 6(6): 1009-1016.
  • 7HURLEY J, GARCI-PALACIOS E, SEZER S. Classifying network protocols: a 'two-way' flow approach[J]. Communications, 2012, 5(1): 19-89.
  • 8TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001,1(1): 211-244.
  • 9ZHANG Mian-ji, ROBUST Y. Hyperspectral classification using relevance vector machine[J]. Geoscience and Remote Sensing, 2011, 49(6): 2100-2112.
  • 10MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[C]//Proc of the 2005 ACM SIGMETRICS Int'l Conf on Measurement and Modeling of Computer Systems. Banff: ACM, 2005: 50-60.

共引文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部