期刊文献+

Tuning band structure of graphitic carbon nitride for efficient degradation of sulfamethazine: Atmospheric condition and theoretical calculation

原文传递
导出
摘要 Numerous approaches have been used to modify graphitic carbon nitride (g-C_(3)N_(4)) for improving its photocatalytic activity. In this study, we demonstrated a facial post-calcination method for modified graphitic carbon nitride (g-C_(3)N_(4)-Ar/Air) to direct tuning band structure, i.e., bandgap and positions of conduction band (CB)/valence band (VB), through the control of atmospheric condition without involving any additional elements or metals or semiconductors. The synthesized g-C_(3)N_(4)-Ar/Air could efficiently degrade sulfamethazine (SMT) under simulated solar light, i.e., 99.0% removal of SMT with rate constant k1 = 2.696 h-1 within 1.5 h (4.9 times than pristine g-C_(3)N_(4)). Material characterizations indicated that the damaged/partial-collapsed structure and decreased nanosheet-interlayer distance for g-C_(3)N_(4)-Ar/Air resulted in the shift of band structure due to the denser stacking of pristine g-C_(3)N_(4) through oxidative exfoliation and planarization by air calcination. In addition, the bandgap of g-C_(3)N_(4)-Ar/Air was slightly shrunk from 2.82 eV (pristine g-C_(3)N_(4)) to 2.79 eV, and the CB was significantly upshifted from -0.44 eV (pristine g-C_(3)N_(4)) to -0.81 eV, suggesting the powerful ability for donating the electrons for O_(2) to form ^(·)O_(2)^(-). Fukui index (f -) based on theoretical calculation indicated that the sites of SMT molecule with high values, i.e., N9, C4 and C6, preferred to be attacked by ^(·)O_(2)^(-) and ^(·)OH, which is confirmed by the intermediates’ analysis. The tuning method for graphitic carbon nitride provides a simple approach to regulate the charge carrier lifetime then facilitate the utilization efficiency of solar light, which exhibits great potential in efficient removal of emerging organic contaminants from wastewater.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1385-1389,共5页 中国化学快报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 21906001, 52100069, 51721006 and 41272375) Beijing Nova Program (No. Z191100001119054) the Fundamental Research Funds for the Central Universities (No.BFUKF202118) China Postdoctoral Science Foundation (No.2021M690208)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部