期刊文献+

聚二炔/纳米氧化铜复合物可逆热致变色性能及应用

Reversible thermochromic property and application of PDA/CuO-NPS composite
下载PDF
导出
摘要 在二炔单体自组装过程中掺杂纳米氧化铜粒子,经紫外光(λ=254nm)照射聚合得到蓝色聚二炔/纳米氧化铜(PDA/CuO-NPS)复合物。在未聚合分散液中加入一定浓度的聚乙烯醇(PVA)水溶液,制备均匀的热致变色PVA/PDA/CuO-NPS薄膜。结果表明,PDA/CuO-NPS复合物具有蓝色到紫色再到红色的颜色转变特性,随着光聚合时间增加,分子内应力增加,变色温度由60℃降低为50℃。降温后分散液颜色迅速恢复到紫色,618nm处的峰值显著提高。通过与聚乙烯醇的交联,得到的PVA/PDA/CuO-NPS薄膜两步变色温度分别升高到约50℃和约85℃,并在红色(30℃)和黄色(90℃)之间可逆转换,经过多次循环后仍具有良好的可逆热致变色性能。 Nano-copper oxide particles were doped in the process of self-assembly of diacetylenic monomers,and the blue polydiacetylene/nano-copper oxide(PDA/CuO-NPS)composite was obtained by polymerized in ultraviolet light(λ=254nm).A certain concentration of polyvinyl alcohol aqueous solution was added to the unpolymerized dispersion to prepare uniform thermochromic polydiacetylene/nano-copper oxide film(PVA/PDA/CuO).The results showed that the PDA/CuO composite had the color transition characteristics from blue to purple to red.As the photopolymerization time increased,the intramolecular stress increased,and the discoloration temperature decreased from 60℃to 50℃.After cooling,the color of the dispersion quickly returned to purple,and the peak at 618nm increased significantly.Through crosslinking with polyvinyl alcohol,the two-step discoloration temperature of the film was increased to~50℃and~85℃respectively,and undergone reversibly converted between red(30℃)and yellow(90℃).It had good reversible thermochromic properties.
作者 刘雯雯 张婉 王潮霞 Liu Wenwen;Zhang Wan;Wang Chaoxia(Key Laboratory of Eco-Textile Ministry of Education,School of Textile Science and Engineering,Jiangnan University,Wuxi 214122)
出处 《化工新型材料》 CAS CSCD 北大核心 2022年第4期278-282,286,共6页 New Chemical Materials
基金 国家自然科学基金(21975107) 国家重点研发计划(2018YFC0810304)。
关键词 聚二炔 可逆热致变色 共轭高分子 纳米氧化铜 polydiacetylene reversible thermochromism conjugated polymer nano-copper oxide
  • 相关文献

参考文献2

二级参考文献29

  • 1J. Pecher and S. Mecking, Chem. Rev. 110, 6260 (2010).
  • 2X. Feng, L. Liu, S. Wang, and D. Zhu, Chem. Soc. Rev. 39, 2411 (2010).
  • 3A. Facchetti, Chem. Mater. 23, 733 (2011).
  • 4C. Zhu, L. Liu, Q. Yang, F. Lv, and S. Wang, Chem Rev. 112, 4687 (2012).
  • 5H. Peng, X. Sun, F. Cai, X. Chen, Y. Zhu, G. Lifo, D Chen, Q. Li, Y. Lu, Y. Zhu, and Q. Jia, Nat. Nano 4 738 (2009).
  • 6D. J. Ahn, S. Lee, and J. M. Kim, Adv. nc. Mater 19, 1483 (2009).
  • 7X. Sun, T. Chen, S. Huang, L. Li, and H. Peng, Chem Soc. Rev. 39, 4244 (2010).
  • 8J. Liang, L. Huang, N. Li, Y. Huang, Y. Wu, S. Fang J. Oh, M. Kozlov, Y. Ma, F. Li, R. Baughman, and Y Chen, ACS Nano 6, 4508 (2012).
  • 9X. L. Chen, L. Li, X. M. Sun, Y. P. Liu, B. Luo, C C. Wang, Y. P. Bao, H. Xu, and H. S. Peng, Angew Chem. Int. Edit. 50, 5486 (2011).
  • 10G. Wegner, Makromolekulare Chem. 154, 35 (1972).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部