期刊文献+

Generalized Aifantis strain gradient plasticity model with internal length scale dependence on grain size,sample size and strain

考虑内禀材料长度变化的广义Aifantis应变梯度塑性模型
原文传递
导出
摘要 The internal length scale(ILS)is a dominant parameter in strain gradient plasticity(SGP)theories,which helps to successfully explain the size effect of metals at the microscale.However,the ILS is usually introduced into strain gradient frameworks for dimensional consistency and is model-dependent.Even now,its physical meaning,connection with the microstructure of the material,and dependence on the strain level have not been thoroughly elucidated.In the current work,Aifantis'SGP model is reformulated by incorporating a recently proposed power-law relation for strain-dependent ILS.A further extension of Aifantis'SGP model by including the grain size effect is conducted according to the Hall-Petch formulation,and then the predictions are compared with torsion experiments of thin wires.It is revealed that the ILS depends on the sample size and grain size simultaneously;these dependencies are dominated by the dislocation spacing and can be well described through the strain hardenmg exponent.Furthermore,both the original and generalized Aifantis models provide larger estimated values for the ILS than Fleck-Hutchinson's theory. 内禀材料长度是应变梯度塑性理论中最重要的参数,被用于成功地解释了微尺度下金属材料的尺寸效应.内禀材料长度在应变梯度框架中通常扮演着平衡量纲的角色,并且其取值依赖于模型.目前,内禀材料长度物理意义、与材料微观结构的关联以及随变形的演化尚未完全明确.本研究对Aifantis应变梯度塑性模型进行了修正,在其中引入了一个最新提出的幂律形式的内禀材料长度演化关系.在此基础上进一步考虑晶粒尺寸效应,基于Hall-Petch关系对Aifantis应变梯度塑性模型进行了扩展,使用上述修正的模型对细丝扭转的实验结果进行了模拟,研究结果表明,内禀材料长度同时取决于试样尺寸和晶粒尺寸,这些相关性主要由位错间距决定,并可以通过应变硬化指数很好地描述.此外,原始Aifantis模型和修正的Aifantis模型中的内禀材料长度的取值均比Fleck-Hutchinson模型的取值更大.
作者 Jianfeng Zhao Bo Zhang Dabiao Liu Avraam A.Konstantinidis Guozheng Kang Xu Zhang 赵建锋;张波;刘大彪;Avraam A.Konstantinidis;康国政;张旭
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第3期86-93,I0003,共9页 力学学报(英文版)
关键词 Strain gradient plasticity theory Internal length scale Sample size Grain size 应变硬化指数 应变梯度塑性理论 金属材料 试样尺寸 晶粒尺寸效应 材料微观结构 长度变化
  • 相关文献

参考文献5

二级参考文献42

  • 1胡更开,刘晓宁,荀飞.非均匀微极介质的有效性质分析[J].力学进展,2004,34(2):195-214. 被引量:18
  • 2Gudmundson, EA.: Unified treatment of strain gradient plas- ticity. J. Mech. Phys. Solids 52, 1379-1406 (2004).
  • 3Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradi- ent plasticity. J. Mech. Phys. Solids 49, 2245-2271 (2001).
  • 4Muhlhaus, H.B., Aifantis, E.C.: A variational principle for gra- dient plasticity. Int. J. Solids Struct. 28, 845-857 (1991).
  • 5Gurtin, M.E., Anand, L.: Thermodynamics applied to gradient theories involving accumulated plastic strain. The theories of Aifantis and Fleck and Hutchinson and their generalizations. J. Mech. Phys. Solids 57, 405-421 (2009).
  • 6Gurtin, M.E., Anand, L.: A theory of strain-gradient plastic- ity for isotropic, plastically irrotational materials. Part I: Small deformations. J. Mech. Phys. Solids 53, 1624-1649 (2005).
  • 7Fleck, N.A.,Willis, J.R.: A mathematical basis for strain gradi- ent plasticity theory. Part I: scalar plastic multiplier. J. Mech. Phys. Solids 57, 161-177 (2009).
  • 8Acharya, A., Bassani, J.L.: Incompatibility and crystal plastic- ity. J. Mech. Phys. Solids 48, 1565-1595 (2000).
  • 9Chen, S.H., Wang, T.C.: A new hardening law for strain gradi- ent plasticity. Acta Mater. 48, 3997-4005 (2000).
  • 10Huang, Y., Qu, S., Hwang, K.C., et al.: A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20, 753-782 (2004).

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部