期刊文献+

Nonlinear size-dependent dynamic instability and local bifurcation of FG nanotubes transporting oscillatory fluids

输运振荡流体FG纳米管的非线性尺寸相关动力失稳和局部分岔
原文传递
导出
摘要 Oscillation of fluid flow may cause the dynamic instability of nanotubes,which should be valued in the design of hanoelectromechanical systems.Nonlinear dynamic instability of the fluid-conveying nanotube transporting the pulsating harmonic flow is studied.The nanotube is composed of two surface layers made of functionally graded materials and a viscoelastic interlayer.The nonlocal strain gradient model coupled with surface effect is established based on Gurtin-Murdoch's surface elasticity theory and nonlocal strain gradient theory.Also,the size-dependence of the nanofluid is established.by the slip flow model.The stability boundary is obtained by the two-step perturbation-Galerkin truncation-Incremental harmonic balance(IHB)method·and compared with the linear solutions by using Bolotin's method.Further,the Runge-Kutta method is utilized to plot the amplitudefrequency bifurcation curves inside/outside the region.Results reveal the influence of nonlocal stress,strain gradient,surface elasticity and slip flow on the response.Results also suggest that the stability boundary obtained by the IHB method represents two bifurcation points when sweeping from high frequency to low frequency.Differently,when sweeping to high.frequency,there exists a hysteresis boundary where amplitude jump will occur. 流体流动的振荡可能会引起纳米管的动态失稳,这在纳米机电系统的设计中应得到重视.文章研究了输流纳米管在传输谐波脉动流时的非线性动力失稳.纳米管由两个功能梯度材料表面层和一个黏弹性夹层组成.基于Gurtin-Murdoch的表面弹性理论和非局部应变梯度理论,建立了考虑表面效应的非局部应变梯度模型.此外,纳米流体的尺寸依赖性由滑移流模型建立.采用两步摄动-伽辽金截断-增量谐波平衡(IHB)方法得到了稳定边界,并与采用Bolotin方法得到的线性解进行了比较.此外,采用龙格-库塔法绘制了稳定边界内外的幅频分岔曲线.结果揭示了非局部应力、应变梯度、表面弹性和滑移流对响应的影响.结果表明,由IHB方法得到的稳定边界表示从高频到低频扫频时的两个分岔点.不同的是,当从低频向高频扫频时,存在一个迟滞边界,在该边界处.会发生振幅突跳.
作者 Qiduo Jin Yiru Ren 金其多;任毅如
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第3期107-118,I0003,共13页 力学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.52172356) Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX20210384).
关键词 Size-dependent effect Slip flow Fluid-conveying nanotube Dynamic instability Bifurcation 功能梯度材料 纳米管 应变梯度理论 滑移流 梯度模型 纳米流体 动力失稳 振荡流体
  • 相关文献

参考文献6

二级参考文献70

  • 1Che, G., Lakshmi, B.B., Fisher, E.R., et al.: Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346-349 (1998).
  • 2Liu, J., Rinzler, A.G., Dai, H., et al.: Fullerene pipes. Science 280, 1253-1256 (1998).
  • 3Ansari, R., Gholami, R., Darabi, M.: Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory. J. Therm. Stress. 34, 1271-1281 (2011).
  • 4Ansari, R., Gholami, R., Darabi, M.: Nonlinear free vibration of embedded double-walled carbon nanotubes with layerwise bound- ary conditions. Acta Mechanica 223, 2523-2536 (2012).
  • 5Georgantzinos, S.K., Anifantis, N.K.: Carbon nanotube-based res- onant nanomechanical sensors: A computational investigation of their behavior. Physica E Low-dimens. Syst. Nanostruct. 42, 1795- 1801 (2010).
  • 6Kleshch, V.I., Obraztsov, A.N., Obraztsova, E.D.: Electromecban- ical self-oscillations of carbon nanotube field emitter. Carbon 48, 3895-3900 (2010).
  • 7Hummer, G., Rasaiah, J.C., Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188-190 (2001).
  • 8Gao, Y., Bando, Y.: Nanotechnology: carbon nanothermometer containing gallium. Nature 415, 599-599 (2002).
  • 9Adali, S.: Variational principles for transversely vibrating multi- walled carbon nanotubes based on nonlocal Euler-Bernoulli beam model. Nano Lett. 9, 1737-1741 (2009).
  • 10Foldvari, M., Bagonluri, M.: Carbon nanotubes as functional excip- ients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed. Nanotechnol. Biol. Med. 4, 183-200 (2008).

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部