摘要
为实现颅缝早闭手术方案制定的规范化,提出一种结合深度学习、立体视觉和点云处理技术的颅骨切割轨迹生成方法,用于建立切割方案模板库和生成新的病例切割方案。该方法将深度学习应用于颅骨外表面的实例分割中,利用Mask R-CNN对手术区域进行检测和分割,利用简化轮廓提取算法提取切割轨迹,并结合点云处理技术将切割轨迹坐标进行2D-3D映射,实现切割轨迹自动化提取;在此基础上建立典型病例模板库,通过模板匹配方法自动生成新病例的切割方案。实验证明:该轨迹提取方法可以准确高效地检测出颅骨切割轨迹,并将轨迹坐标进行3D映射,点云深度测量误差小于3 mm,达到临床可用标准;模板匹配方法也有效生成新病例的切割轨迹,符合资深医生的手术方案。
To standardize the plan generation of craniosynostosis surgery,we propose a skull cutting trajectory generation method which combines deep learning,stereo vision and point cloud processing technology to establish cutting plan template library and generate cutting trajectory for new cases.The proposed method,for the first time,uses the deep learning to segment the external surface of skull.First,it takes the advantage of Mask R-CNN to detect and segment the surgical cutting area.Then,a simplified contour extraction algorithm is explored to extract the surgical cutting trajectory.After that,the point cloud processing technology is used to map the surgical cutting trajectory to three-dimensional coordinates and realize the automatic extraction of cutting trajectory.Finally,a template library with typical cases is established and the cutting plans of new cases are automatically generated by template matching method.The experiment shows that the proposed trajectory extraction method can detect the skull surgical cutting trajectory accurately and efficiently and conduct three-dimensional mapping of trajectory coordinate.The depth measurement error of point cloud is less than 3 mm,which meets the clinical available standard.Using the template matching method,the new case’s cutting trajectory can be generated effectively,which conforms to surgical plan of senior doctors.
作者
罗杨宇
贺佳宾
谢东升
陆珅宇
宫剑
LUO Yangyu;HE Jiabin;XIE Dongsheng;LU Shenyu;GONG Jian(Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;Beijing Tiantan Hospital,Capital Medical University,Beijing 100070,China)
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2022年第4期578-585,共8页
Journal of Beijing University of Aeronautics and Astronautics
基金
国家重点研发计划(2017YFE0121200)。
关键词
颅缝早闭
轨迹提取
深度学习
深度相机
点云处理
craniosynostosis
trajectory extraction
deep learning
depth camera
point cloud processing