期刊文献+

基于CNN-BiLSTM与DTW的非侵入式住宅负荷监测方法 被引量:14

Non-intrusive Residential Load Monitoring Method Based on CNN-BiLSTM and DTW
下载PDF
导出
摘要 为减少居民生活用电浪费现象,非侵入式负荷监测技术显示出其重要性。基于事件检测的情况下,该文提出一种基于卷积神经网络耦合双向长短时记忆神经网络(convolutionalneuralnetworksandBi-directionallong short-term memory,CNN-BiLSTM)与动态时间规划(dynamic time warping,DTW)的非侵入式住宅负荷监测方法。首先通过概率质量函数计量负荷的运行状态信息,提取出稳态运行时的U-I特性曲线图;然后将图片归一化为统一格式的灰度图,利用卷积神经网络提取出特征向量作为负荷印记;将其输入至双向长短时记忆神经网络中进行辨识,并利用动态时间规划算法优化辨识结果,实现高精度的负荷辨识。最后,利用PLAID公开数据集对于所提算法进行仿真验证,实验证明所选负荷印记具有良好的辨识性能,辨识算法相比对比算法具有更高的信度与准确率。 To reduce the waste of electricity in residents’lives,non-intrusive load monitoring shows its importance.Under the premise of event detection,a non-invasive residential load monitoring method based on convolutional neural networks-Bi-directional long short-term memory(CNN-BiLSTM)and dynamic time warping(DTW)is proposed.Firstly,the information of load operation state is measured by probability mass function,and the U-I characteristic curve of steady-state operation is extracted;Then,the image is normalized to a unified gray scale image,and the feature vector is extracted by convolution neural network as the load signature;Input the data into the BiLSTM for identification and use the DTW to optimize the identification results to achieve high identification accuracy.Finally,the PLAID public data set is used to simulate and verify the proposed algorithm.The simulation results show that the selected load signature has good identification performance,and the identification algorithm has higher reliability and accuracy than the comparison algorithm.
作者 林顺富 詹银枫 李毅 李东东 LIN Shunfu;ZHAN Yinfeng;LI Yi;LI Dongdong(College of Electrical Engineering,Shanghai University of Electric Power,Yangpu District,Shanghai 200082,China)
出处 《电网技术》 EI CSCD 北大核心 2022年第5期1973-1981,共9页 Power System Technology
基金 国家自然科学基金项目(51977127) 上海市科学技术委员会项目(19020500800) 上海市人才发展资金(2018004)。
关键词 非侵入式负荷监测 U-I特性曲线 卷积神经网络 双向长短时记忆神经网络 动态时间规划 non-intrusive load monitoring U-I characteristics curves convolutional neural networks bi-directional long short-term memory dynamic time warping
  • 相关文献

参考文献13

二级参考文献129

  • 1孙旭,任震.空间负荷预测在城市电网规划中的应用[J].继电器,2005,33(14):79-81. 被引量:32
  • 2Albadi M H, E1-Saadany E F. A summary of demand response in electricity markets[J]. Electric Power Systems Research, 2008, 78: 1989-1996.
  • 3US Departrnent of Energy. Benefits of demand response in electricity markets and recommendations for achieving them[R/OL]. Report to the United States Congress, February 2006[2015]. http://eetd.lbl.gov.
  • 4Federal Energy Regulatory Commission. Assessment of demand response & advanced metering[R]. FERC Staff Issue Assessment of Demand Response and Advanced Metering Report, 2012.
  • 5North American Electric Refiablity Corporation. Potential reliability impacts of emerging flexible resources [R/OL]. Princeton: NERC, 201012015-09]. http://www.nerc.com/files/1VGTF_ Task_15_Final. pdf.
  • 6Saele H, Grande OS. Demand response from household customers: experiences from a pilot study in Norway[J]. IEEE Transactions on SmartGrid, 2011, 2(1): 102-109.
  • 7国家发展改革委,财政部.关于完善电力应急机制做好电力需求侧管理城市综合试点工作的通知[EB/OL].北京:中华人民共和国国家发展和改革委员会,2015[2015-04-07].http://www.sdpc.govc11/zcfI)/zcfbtd201504,t20150409677004.html.
  • 8Shariatzadeh F, Mandal P, Srivastava A.K. Demand response for sustainable energy systems: a review, application and implementation strategy[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 343-350.
  • 9Woychik E C. Optimizing demand response[J/OL]. Public Utilities Fortnightly, 2008(5): 52-56. http://www.ferc.gov/CalendarFiles/ 20080521081541 -Woychik%20Attachrnent,%20C omverge.pdf.
  • 10Kwag H G, Kim J O. Reliability modeling of demand response considering uncertainty of customer behavior[J]. Applied Energy, 2014, 122: 24-33.

共引文献418

同被引文献132

引证文献14

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部