期刊文献+

混合CNN-HMM的人体动作识别方法 被引量:5

Human Motion Recognition Method Using Hybrid CNN-HMM
下载PDF
导出
摘要 针对当前人体动作识别算法检测精度不佳和实验场景多样性的问题,提出了一种混合卷积神经网络−隐马尔可夫模型(CNN-HMM)的人体动作识别方法。建立了抬腿、深蹲和仰卧臀桥3组分别包含1个标准动作姿态和5个非标准动作姿态的人体康复训练动作模型库,结合可穿戴式惯性动作捕捉系统PN2.0获取实验数据。最后从准确率、灵敏度和特异性3个方面进行性能评估。实验结果表明,该方法能够以较高识别率将6种不同动作姿态区分开,其平均识别准确率为97.00%,相较于单一CNN方法提高了5.78%。 Aiming at the problems of poor detection accuracy of current human motion recognition algorithms and the diversity of experimental scenes,a new human motion recognition method based on hybrid convolutional neural network-hidden Markov model(CNN-HMM)is proposed.In order to verify the effectiveness of the method,we establish three sets of human rehabilitation training motion models including one standard motion posture and five non-standard motion postures for leg-lifting,squat and hip bridge,respectively.The experimental data are obtained by the wearable inertial motion capture system,Perception Neuron 2.0(PN2.0).Finally,the performance of the proposed method is evaluated in terms of accuracy,sensitivity and specificity.Three groups of the experimental results show that the proposed method can distinguish the six different motion gestures with a high average recognition rate of 97.00%,which is 5.78%higher than the single CNN method.
作者 张振 张师榕 赵转哲 刘永明 阚延鹏 涂志健 ZHANG Zhen;ZHANG Shirong;ZHAO Zhuanzhe;LIU Yongming;KAN Yanpeng;TU Zhijian(School of Mechanical Engineering,Anhui Polytechnic University Wuhu,Anhui 241000;Wuhu Ceprei Robot Technoligy Research Co.,Ltd.Wuhu,Anhui 241000)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2022年第3期444-451,共8页 Journal of University of Electronic Science and Technology of China
基金 安徽省重点研究与开发计划(202004b11020006) 安徽省自然科学基金(2108085QF278) 安徽省留学人员创新项目择优资助计划(2020LCX013)。
关键词 卷积神经网络 隐马尔可夫模型 人体动作识别 模式识别与智能系统 感知神经元 convolutional neural networks hidden Markov model human motion recognition pattern recognition and intelligent system perception neuron
  • 相关文献

参考文献7

二级参考文献50

  • 1李玉鹏,刘婷婷,张良.基于深度学习的人体动作识别方法[J].计算机应用研究,2020,37(1):304-307. 被引量:6
  • 2Zhang, Zhiqiang, Wong, Wai Choong, Wu, Jiankang.Wearable sensors for 3D upper limb motion modeling and ubiquitous estimation[J].控制理论与应用(英文版),2011,9(1):10-17. 被引量:5
  • 3黄雪樵.克服欧拉方程奇异性的双欧法[J].飞行力学,1994,12(4):28-37. 被引量:30
  • 4Xu M, Ellis T. Augmented tracking with incomplete observation and probablistic reasoning[J]. Image and Vision Computing, 2006, 24(11): 1202-1217.
  • 5Migdal J, Gimson W E L. Background subtraction using Markov thresholds[J]. Processding of Workshop on Motion and Video Computing, 2005, 2 (1) : 58- 65.
  • 6Yin Z Z, Collins R C. Belief propagation in a 3D spatio-temporal MRF for moving object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: CVPR, 2007: 1-8.
  • 7Zhou Z H. Medical image segmentation based on a 3D-MRF[C]//International Conference on BioMedical Engineering and Informatics. Shenzhen: BMEI, 2008: 137-141.
  • 8Li S Z. Mark-v random field models in computer vision[J]. Computer Science, 1994, 801(1): 361-370.
  • 9Seki M, Wada T, Fujiwara H, et al. Background subtraction based on cooccurrence of image variations [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Wisconsin: Madison, 2003: 1-8.
  • 10Keijia B. Adapive confidence map fusion in visual object tracking[C]// International Conference on Infor- mation Engineering and Computer Science. Wuhan: ICIECS, 2009: 1-4.

共引文献112

同被引文献71

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部