摘要
针对现有的工程竹材散斑图像重建方法性能上的不足,在基于注意力密集残差网络的基础上,构建了用于工程竹材散斑图像超分辨率重建的生成对抗网络。使用带有注意力模型的残差网络作为主网络,去除所有的BN层,将单层网络逐层密接,使用L_(1)损失函数训练网络,将以上网络作为生成模型,使用相对均值判别器作为网络的判别模型,生成器使用结合感知损失、内容损失和对抗损失的综合损失函数,判别器使用相对均值判别器的损失函数,使网络能够还原出质量更高的图像。
In view of the performance shortcomings of the existing engineering bamboo speckle image reconstruction methods,based on the attention intensive residual network,a generation countermeasure network for super-resolution reconstruction of engineering bamboo speckle image was constructed.Using the residual network with attention model as the main network,all BN layer removed,the single-layer network connected layer by layer,and L_(1).loss function used to train the network,the above network taken as the generation model,the relative mean discriminator used as the discrimination model of the network,the comprehensive loss function combining perception loss,content loss and confrontation loss used by the generator,and the loss function of the relative mean discriminator used by the discriminator,the network could restore higher-quality images.
作者
刘铮
刘英
庄子龙
谢超
LIU Zheng;LIU Ying;Zhuang Zi-long;XIE Chao(College of Electronic and Mechanical Engineering,Nanjing Forestry University,Nanjing Jiangsu 210037,China)
出处
《林业机械与木工设备》
2022年第5期85-90,共6页
Forestry Machinery & Woodworking Equipment
基金
国家自然科学基金项目“基于深度残差网络的单幅大倍率超分辨率重建模型研究”(61901221)
2020年江苏省普通高校研究生科研创新计划项目“面向工程竹材DIC技术的图像超分辨率方法研究”(KYCX20_0872)。
关键词
工程竹材
图像超分辨率
残差网络
engineering bamboo
image super-resolution
residual network