期刊文献+

基于积分方程正则化的重力异常超定问题解法 被引量:2

Over - determined Model for Computing Gravity Anomaly Based on Regularization Solution of Discrete Integration Eguation
下载PDF
导出
摘要 地球重力场的观测信息越来越丰富,求解重力异常的超定模型将具有实用价值。据此给出了基于第一类Fredholm型积分方程离散型解法求解重力异常的超定模型,建立了地面重力、测高数据、重力梯度和垂线偏差求解重力异常的观测方程,并给出求解病态观测方程的正则化算法。 There are more and more types of observations about the earth s gravity field, therefore, the over determined model of computing gravity anomaly has the value to be used in practice. This paper introduces the over determined model to compute gravity anomaly based on the discrete solution of the first kind Fredholm integration equation, establishes the observational equations of computing gravity anomaly with gravity data, satellite altimetry data,gravity tensor and the deflection of the vertical. Because of the observational equation ill - posed, its regularization solution is also discussed in this paper.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第11期1337-1341,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(49634140)
关键词 积分方程 重力异常 地球重力场 超定问题 正则化算法 离散型解法 earth's gravity field over determined problem regularization solution
  • 相关文献

参考文献1

  • 1石磐.扰动位的综合确定.测绘学报,1984,13(4):241-248.

共引文献4

同被引文献12

  • 1Li J, Zhang Y, Zehng F, et al. The structure of XLPE and the distribution of space charge [J]. Science in China(Series G) ,2003,46(3): 185.
  • 2Alquie C, Dreyfus G, Lewiner J. Stress-wave probing of electric field distributions in dielectrics [J]. Phys Rev Lett, 1981, 47:1483.
  • 3Ditchi T. Perfectionnement de la methode de l′onde de pression. Application at l'étude de structures isolantes at base de polyethylène [ Thèse de doctorat] [ DJ. Paris: Université Paris VI, 1990.
  • 4Davies A E, Chen G, Vazquez A. Space charge measurement in disperisive dielectrics [A]. JICABLE, Versailles, 1999.
  • 5Ho Y F F. Space charge measurement of XLPE- a comparison of ac and dc stressing [ Dissertation for PhD Degree] [ D ]. Southampaton: University of Southampton, 2001.
  • 6Abou-Dakka M,Bamji S S,Bulinski A T. Space-charge distribution in XLPE by TSM, using the inverse matrix technique [J]. IEEE Trans on Dielectr and Electr Insul, 1997, 4(3): 314.
  • 7Tikhonov A N. On regularization of ill-posed problems [J]. Dokl Akad Nauk SSSR, 1963, 153: 49.
  • 8Philips D L. A technique for the numerical solution of certain integral equations of the first kind [ J]. J A C M, 1962, 9: 84.
  • 9Groetsch C W. The theory of Tikhonov regularization for Fredholm equations of the first kind [ M]. London: Pitman publishing limited,1984. 15.
  • 10Maeno T, Fukunaga K. High-resolution PEA charge distribution measurement system [ J]. IEEE Trans on Dielectr and Electr Insul,1996,3(6) :754.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部