期刊文献+

基于浅层方法和深度网络集成的短期风电功率预测 被引量:4

Short⁃term wind power prediction based on shallow method and deep network integration
下载PDF
导出
摘要 风电功率的预测精度受到多种因素的影响,为进一步提高预测精度,提出一种基于浅层方法和深度网络集成的短期风电功率预测模型(GRA⁃GWO⁃SVR⁃AdaBoost⁃GRU),集成灰色关联度分析(GRA)、支持向量回归机(SVR)、自适应提升集成(AdaBoost)和门控循环单元(GRU)等多种模型/方法。首先采用GRA计算变量之间的相关程度,选择相关性高的3个特征作为模型的输入;其次利用GWO算法对SVR的惩罚参数和核函数参数进行优化,建立GWO⁃SVR预测模型;然后采用AdaBoost集成模型构建强回归器进行预测;最后采用GRU模型对预测误差进行修正,将修正后的误差与预测结果进行叠加,得到最终预测值。仿真结果表明,该模型的预测结果的均方根误差和R⁃Square显著优于其他传统模型,有效提高了风电功率的预测精度。 The wind power prediction accuracy is affected by many factors.In order to improve the prediction accuracy,a short⁃term wind power prediction model combining gray correlation analysis(GRA),support vector regression(SVR),adaptive boosting model(AdaBoost)and gated recurrent unit(GRU)is proposed,which is based on the shallow method and deep network integration.GRA is used to calculate the correlation between variables and three features with high correlation are selected as the input of the model.The GWO algorithm is used to optimize the penalty parameter and kernel function parameter of SVR to establish the GWO⁃SVR prediction model.Then,the AdaBoost integrated model is used to construct a strong regressive device for wind power prediction.The GRU model is used to correct the prediction error.The corrected error is superimposed with the prediction value to get the final prediction value.Simulation results show that the root mean square error and R⁃Square of the prediction results of this model are significantly better than that of the other traditional models,which effectively improves the accuracy of wind power prediction.
作者 曾亮 狄飞超 王珊珊 常雨芳 ZENG Liang;DI Feichao;WANG Shanshan;CHANG Yufang(School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan 430068,China;Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System,Hubei University of Technology,Wuhan 430068,China)
出处 《现代电子技术》 2022年第11期118-124,共7页 Modern Electronics Technique
基金 国家自然科学基金项目(51977061) 国家自然科学基金项目(61903129) 湖北省重点研发计划项目(2020BAB114)。
关键词 风电功率预测 参数优化 预测模型 灰色关联度分析 支持向量回归机 门控循环单元 强回归器 误差修正 wind power prediction parameter optimization prediction model GRA SVR GRU strong regressive device error correction
  • 相关文献

参考文献11

二级参考文献164

  • 1Bo HU,Yudun LI,Hejun YANG,He WANG.Wind speed model based on kernel density estimation and its application in reliability assessment of generating systems[J].Journal of Modern Power Systems and Clean Energy,2017,5(2):220-227. 被引量:13
  • 2李洪涛.人工神经网络和模糊技术在风能预测中的应用[J].中国电力,2012,45(8):69-73. 被引量:10
  • 3杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 4Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks . 1995
  • 5Guang-Bin Huang,Qin-Yu Zhu,Chee-Kheong Siew.Extreme learning machine: Theory and applications[J]. Neurocomputing . 2006 (1)
  • 6Huang, Guang-Bin,Wang, Dian Hui,Lan, Yuan.Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics . 2011
  • 7Guang-Bin Huang.An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels[J]. Cognitive Computation . 2014 (3)
  • 8Conejo, Antonio J.,Plazas, Miguel A.,Espínola, Rosa,Molina, Ana B.Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Transactions on Power Systems . 2005
  • 9Jooyoung Jeon,James W. Taylor.Using Conditional Kernel Density Estimation for Wind Power Density Forecasting. Journal of the American Statistical Association . 2012
  • 10Cheng C,Tay W P,Huang G B.Extreme Learning Machines for Intrusion Detection. Proceedings of2012International Joint Conference on Neural Networks . 2012

共引文献581

同被引文献58

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部