摘要
风电功率的预测精度受到多种因素的影响,为进一步提高预测精度,提出一种基于浅层方法和深度网络集成的短期风电功率预测模型(GRA⁃GWO⁃SVR⁃AdaBoost⁃GRU),集成灰色关联度分析(GRA)、支持向量回归机(SVR)、自适应提升集成(AdaBoost)和门控循环单元(GRU)等多种模型/方法。首先采用GRA计算变量之间的相关程度,选择相关性高的3个特征作为模型的输入;其次利用GWO算法对SVR的惩罚参数和核函数参数进行优化,建立GWO⁃SVR预测模型;然后采用AdaBoost集成模型构建强回归器进行预测;最后采用GRU模型对预测误差进行修正,将修正后的误差与预测结果进行叠加,得到最终预测值。仿真结果表明,该模型的预测结果的均方根误差和R⁃Square显著优于其他传统模型,有效提高了风电功率的预测精度。
The wind power prediction accuracy is affected by many factors.In order to improve the prediction accuracy,a short⁃term wind power prediction model combining gray correlation analysis(GRA),support vector regression(SVR),adaptive boosting model(AdaBoost)and gated recurrent unit(GRU)is proposed,which is based on the shallow method and deep network integration.GRA is used to calculate the correlation between variables and three features with high correlation are selected as the input of the model.The GWO algorithm is used to optimize the penalty parameter and kernel function parameter of SVR to establish the GWO⁃SVR prediction model.Then,the AdaBoost integrated model is used to construct a strong regressive device for wind power prediction.The GRU model is used to correct the prediction error.The corrected error is superimposed with the prediction value to get the final prediction value.Simulation results show that the root mean square error and R⁃Square of the prediction results of this model are significantly better than that of the other traditional models,which effectively improves the accuracy of wind power prediction.
作者
曾亮
狄飞超
王珊珊
常雨芳
ZENG Liang;DI Feichao;WANG Shanshan;CHANG Yufang(School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan 430068,China;Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System,Hubei University of Technology,Wuhan 430068,China)
出处
《现代电子技术》
2022年第11期118-124,共7页
Modern Electronics Technique
基金
国家自然科学基金项目(51977061)
国家自然科学基金项目(61903129)
湖北省重点研发计划项目(2020BAB114)。